
Direct Proof

Generic Outline of Direct Proof: The following proof will be an example of a direct
proof. To prove an implication P → Q,

1. Suppose P .
2. Prove Q.

Definitions:

1. A natural number n is yellow if there exists a natural number k so that n = 4k.
2. A natural number n is green if there exists a natural number k so that n = 4k + 1.
3. A natural number n is pink if there exists a natural number k so that n = 4k + 2.
4. A natural number n is brown if there exists a natural number k so that n = 4k + 3.

Theorem: If a natural number n is yellow, then n2 is also yellow.

Proof: Suppose that n is a natural number. We will show that if n is yellow, then n2 is
yellow. First, let n be yellow. By the definition of yellow, there exists a natural number k
so that n = 4k. It follows that

n2 = (4k)2

= 16k2

= 4(4k2).

By the definition of yellow, we see that if n is yellow, then n2 is also yellow. �
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Cases

Generic Outline of Cases Proof: The following proof will be an example of a cases proof.
To prove a implication (P ∨Q)→ R,

1. Prove P → R.
2. Prove Q→ R .

Definitions:

1. An integer n is yellow if there exists an integer k so that n = 4k.
2. An integer n is green if there exists an integer k so that n = 4k + 1.
3. An integer n is pink if there exists an integer k so that n = 4k + 2.
4. An integer n is brown if there exists an integer k so that n = 4k + 3.

Lemma 1: An integer n is yellow if and only if n ≡4 0.

Proof: Suppose that n is yellow. This means that there is an integer k with n = 4k. It follows
that 4k = (n− 0) and n ≡4 0. Now suppose that n ≡4 0. This means that 4k = (n− 0) so
there exists a k ∈ Z so that 4k = n− 0. Then, 4k = n; thus n is yellow.

Lemma 2: An integer n is green if and only if n ≡4 1.

Proof: Suppose that n is green. This means that there is an integer k with n = 4k + 1. It
follows that 4k = (n − 1) and n ≡4 1. Now suppose that n ≡4 1. This means that there
exists a k ∈ Z so that 4k = (n− 1), so 4k = n− 1. Then, 4k + 1 = n; thus n is green.

Lemma 3: An integer n is pink if and only if n ≡4 2.

Proof: Suppose that n is pink. This means that there is an integer k with n = 4k + 2.
It follows that 4k = (n − 2) and n ≡4 2. Now suppose that n ≡4 2. This means that
4k = (n− 2) for some k ∈ Z, so 4k = n− 2. Then, 4k + 2 = n; thus n is pink.

Lemma 4: An integer n is brown if and only if n ≡4 3.

Proof: Suppose that n is brown. This means that there is an integer k with n = 4k + 3.
It follows that 4k = (n − 3) and n ≡4 3. Now suppose that n ≡4 3. This means that
4k = (n− 3) for some k ∈ Z, so 4k = n− 3. Then, 4k + 3 = n; thus n is brown.

Theorem: Every integer n is exactly one of yellow, green, pink, or brown.

Proof: Let n ∈ Z. We can apply the division algorithm to express n = 4q + r where q and r

are unique with 0 ≤ r < 4. Since 0 ≤ r < 4, we know that r is either 0, 1, 2, or 3. If r = 0,
then by the definition of equivalence modulo, n ≡4 0 then by Lemma 1, n is yellow. If r = 1,
then by the definition of equivalence modulo, n ≡4 1 then by Lemma 2, n is green. If r = 2,
then by the definition of equivalence modulo, n ≡4 2 then by Lemma 3, n is pink. If r = 3,
then by the definition of equivalence modulo, n ≡4 3 then by Lemma 4, n is brown. Thus

2



a number is either yellow, green, pink, or brown. Since, q and r are unique, we see that n
cannot be more than one of yellow, green, pink, or brown. �
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Biconditional

Generic Outline of Biconditional Proof: The following proof will be an example of a
biconditional proof. To prove a biconditional P ↔ Q,

1. Prove P → Q.
2. Prove Q→ P .

Theorem: Let n be a natural number. Then n is even if and only if n2 is even.

Proof: Let n be a natural number. We will prove that n is even if and only if n2 is even.
First, we will show that if n is even, then n2 is even. Then, we will show that if n2 is even,
then n is even. Suppose that n is even. That means that 2|n. By the definition of divides,
there is some natural number k so that n = 2k. It follows that

n2 = (2k)2

= 4k2

= 2(2k2).

By the definition of even, we see that if n is even, then n2 is also even.

Next, we will show that if n2 is even, then n is even. We will use the contrapositive to
show this. The contrapositive states “if n is not even, then n2 is not even.” Suppose that n
is not even, that is n is odd. By the definition of odd, there exists some natural number k
so that n = 2k + 1. It follows that

(2k + 1)2 = 4k2 + 4k + 1

= 2(2k2 + 2k) + 1

Thus we see that if n is odd, then n2 is odd. Therefore, we see that if n is not even, then n2

is not even, affirming the contrapositive. Hence, we have proven that n is even if and only
if n2 is even. �
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Disjunction

Generic Outline of Disjunction Proof: The following proof will be an example of a
disjunction proof. To prove a disjunction P ∨Q,

1. Suppose ¬P .
2. Prove Q.

Theorem: Suppose that p is a prime number and that a, b ∈ N so that p|ab. Then, either
p|a or p|b.

Proof: Let a and b be natural numbers. Suppose that p is a prime number and that p|ab.
We will prove that either p|a or p|b. To do so, now suppose that p does not divide a. We
must show that p|b. Since p does not divide a, and since p is prime, the greatest common
divisor of p and a is 1. By the Euclidean Algorithm, we see that there are x, y ∈ Z so that
1 = xp+ ya. Multiplying this by b yields b = bxp+ yab. Since p|ab, by definition of divides,
there exists a k ∈ N so that pk = ab. It follows that

b = bxp+ ykp

= p(bx+ yk)

Since bx+ yk is a natural number, we see that p|b. Thus, if p 6 |a we see that p|b. Therefore,
p|a or p|b. �
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Contrapositive

Generic Outline of Contrapositive Proof: The following proof will be an example of a
contrapositive proof. To prove an implication P → Q,

1. Suppose ¬P .
2. Prove Q.

Definitions:

1. A natural number n is yellow if there exists a natural number k so that n = 4k.
2. A natural number n is green if there exists a natural number k so that n = 4k + 1.
3. A natural number n is pink if there exists a natural number k so that n = 4k + 2.
4. A natural number n is brown if there exists a natural number k so that n = 4k + 3.

Theorem: Let n be a natural number. If 3n+ 1 is yellow, then n is green.

Proof: Suppose that n is a natural number. We will prove that if 3n+ 1 is yellow, then n is
green. To do this, we will use the contrapositive which states, “If n is not green, then 3n+1
is not yellow.” Suppose that n is not green. Since a natural number can be precisely one
of yellow, green, pink, or brown, if n is not green, n is either yellow, pink, or brown. First,
suppose that n is yellow. By the definition of yellow, there exists a natural number k so that
n = 4k. It follows that

3n+ 1 = 3(4k) + 1

= 12k + 1

= 4(3k) + 1

Thus, by the definition of green, we see that if n is yellow, then 3n+1 is green and not yellow.

Next, suppose that n is pink. By the definition of pink, there exists a natural number k
so that n = 4k + 2. It follows that

3n+ 1 = 3(4k + 2) + 1

= 12k + 7

= 4(3k + 1) + 3

Thus, by the definition of brown, we see that if n is pink, then 3n+1 is brown and not yellow.

Next, suppose that n is brown. By the definition of brown, there exists a natural number
k so that n = 4k + 3. It follows that

3n+ 1 = 3(4k + 3) + 1

= 12k + 10

= 4(3k) + 2

Thus, by the definition of pink, we see that if n is brown, then 3n+1 is pink and not yellow.
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Therefore, we see that when n is not green, 3n+ 1 is not yellow affirming the contrapos-
itive. Consequently, we have shown that if 3n+ 1 is yellow, then n is green. �
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Contradiction

Generic Outline of Contradiction Proof: The following proof will be an example of a
contradiction proof. To prove P , 1. Suppose ¬P .

2. Show a contradiction.

Theorem: There are infinitely many prime numbers.

Proof: We will prove by contradiction that there are infinitely many prime numbers. Assume
the contrary, that there are a finite number of prime numbers. We will denote all the
prime numbers as p1, p2, p3, · · · , pn where pn is the last prime number. Consider the number
q = p1(p2)(p3) · · · (pn) + 1. The number q is either prime or composite. If we divide any
of the listed primes pi into q, there would result a remainder of 1 for each i = 1, 2, 3, · · ·n.
Thus, we see that q is not composite. Since a number is either prime or composite, q must
be prime yet not included in the list p1, p2, p3, · · · , pn. This is a contradiction, because the
list of all prime numbers does not include the prime number q. Therefore, we see that there
are infinitely many prime numbers. �
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Induction

Generic Outline of Proof by Induction: The following proof will be an example of an
induction proof. To prove that P (n) is true for all integers n ≥ m,

1. Prove P (m).
2. Let k ∈ Z with m ≤ k.
3. Suppose P (k).
4. Prove P (k + 1).

Theorem: For any natural number n, 1 +
1

2
+

1

4
+ · · ·+

1

2n
< 2

Proof: Let P (n) be the open statement “1 +
1

2
+

1

4
+ · · ·+

1

2n
< 2.” We will prove through

mathematical induction that P (n) is true for all natural numbers. First, note that P (0) is

true, because
1

20
= 1 < 2. Next, suppose that P (k) is true for some natural number k. That

means 1+
1

2
+
1

4
+· · ·+

1

2k
< 2.Observe that multiplying by

1

2
yields

1

2
+
1

4
+· · ·+

1

2k
+

1

2k+1
< 1.

Then adding 1 gives 1 +
1

2
+

1

4
+ · · ·+

1

2k
+

1

2k+1
< 2

Thus, we see that P (0) is true and that P (k) implies P (k + 1) for all k ∈ N. By
mathematical induction, we can conclude that P (n) is true for all natural numbers. �
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Subset

Generic Outline of Subset Proof: The following proof will be an example of a subset
proof. To prove that a set A is a subset of a set B,

1. Let a ∈ A.
2. Prove a ∈ B.

Theorem: Suppose that set A is defined by A = {n ∈ N : 6|n}, and suppose set B is defined
by B = {n ∈ N : 2|n}. Then, A ⊆ B.

Proof: Suppose that set A is defined by A = {n ∈ N : 6|n}, and suppose set B is defined by
B = {n ∈ N : 2|n}. We will prove that A ⊆ B. Let x ∈ A be arbitrary. By the definition of
A, 6|x. By the definition of divides, there exists some natural number k so that x = 6k. It
follows that x = 2(3k). Thus, we see that 2|x. Therefore x is also in B. Since an arbitrary
element of A is also an element in B, we see that A ⊆ B. �
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Set Equality

Generic Outline of Proof of Set Equality: The following proof will be an example of a
set equality proof. To prove that a set A equals a set B,

1. Prove A ⊆ B.
2. Prove B ⊆ A.

Theorem: Let A,B, and C be sets. Then A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Proof: Let A, B, C be sets. We will prove that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
First, we will show that A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C). Then we will show that
(A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C). Suppose that x ∈ A ∩ (B ∪ C). By the definition of
intersection, x ∈ A. and x ∈ (B ∪C). By the definition of union, x ∈ B or x ∈ C. If x ∈ B,
then x ∈ A and x ∈ B, so x ∈ (A ∩ B). If x ∈ C, then x ∈ A and x ∈ C, so x ∈ (A ∩ C).
We see that either x ∈ (A ∩ B) or x ∈ (A ∩ C). By the definition of union, this means that
x ∈ (A ∩ B) ∪ (A ∩ C). Therefore, we can conclude that A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C)

Next let x ∈ (A ∩B) ∪ (A ∩C). By the definition of union, x ∈ (A ∩B) or x ∈ (A ∩C).
According to the definition of intersection, either x ∈ A and x ∈ B, or x ∈ A and x ∈ C.
By the distributive law, x ∈ A and x ∈ B or x ∈ C. By the definition of union, x ∈ A, and
x ∈ (B ∪C). By the definition of intersection, x ∈ A∩ (B ∪C). Thus, (A∩B)∪ (A∩C) ⊆
A∩ (B ∪C). Since A∩ (B ∪C) ⊆ (A∩B)∪ (A∩C) and (A∩B)∪ (A∩C) ⊆ A∩ (B ∪C),
then we can conclude that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C). �
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Existential

Generic Outline of Proof of an Existential Statement: The following is an example of
an existential statement proof. To prove an existential statement, exhibit an instance when
the statement is true.

Theorem: There exists a natural number k so that kk = k + k.

Proof: We will prove that there exists a natural number k so thatkk = k + k. Note that
22 = 4 and 2 + 2 = 4. Thus 2 is an example of a natural number k that satisfies kk = k+ k.
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Universal

Generic Outline of Proof of a Universal Statement: The following is an example of
a universal statement proof. To show that a statement is true for all

Theorem: For all odd natural numbers n, 2n2 + 44n− 23 is odd.

Proof: Let n be an odd natural number. We will prove that 2n2 + 44n − 23 is odd. Note
that

2n2 + 44n− 23 = 2(n2 + 22n− 12) + 1.

Thus, we see by the definition of odd that, 2n2 + 44n− 23 is odd. �
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Inverse Function

Generic Outline of Proof that two functions are inverses: The following will be an
example of a proof showing that two functions are inverses. To prove that g : B → A is the
inverse of f : A→ B,

1. Let a ∈ A

2. Prove g(f(a)) = a

3. Let b ∈ B

4. Prove f(g(b)) = b

Theorem: The functions f : R → R given by f(x) = 4x − 16 and g : R → R given by

g(x) =
1

4
x+ 4 are inverses.

Proof: We will show that the functions f : R → R given by f(x) = 4x− 16 and g : R → R

given by g(x) =
1

4
x+ 4 are inverses. Let a ∈ R be arbitrary. It follows that

g(f(a)) =
1

4
(f(a)) + 4

=
1

4
(4a− 16) + 4

= a− 4 + 4

= a.

Thus we see that g(f(a)) = a for any a ∈ R.

Next, let b ∈ R be arbitrary. It follows that

f(g(b)) = 4(f(b))− 16

= 4(
1

4
b+ 4)− 16

= b+ 16− 16

= b.

Thus we see that f(g(b)) = b for any b ∈ R. Therefore, we can conclude that f and g are
inverses. �
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Injectivity

Generic Outline of Proof of Injectivity: The following will be an example of a proof
showing that a function is injective. To prove a function’s injectivity,

1. Suppose f(x) = f(y).
2. Prove x = y.

Theorem: Suppose that f : [0, 1]→ R given by f(x) = x2 is a function. Then f is injective.

Proof: Suppose that f : [0, 1]→ R given by f(x) = x2 is a function. We will prove that f is
injective. Let x, y ∈ [0, 1] and suppose that f(x) = f(y). Then x2 = y2. Taking the square
root yields ±x = ±y. Since x, y ∈ [0, 1], x and y are never negative; thus x = y. Therefore,
we see that if f(x) = f(y), then x = y. Consequently, f is injective. �
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non-Injectivity

Generic Outline of Proof of non-Injectivity: The following will be an example of a
proof showing that a function is not injective. To prove a function f : A→ B is not injective,

1. Give an example of x, y ∈ A so that x 6= y but f(x) = f(y).

Theorem: The function f : R→ R given by f(x) = x2 is not injective.

Proof: We will show that the function f : R→ R given by f(x) = x2 is not injective. Note
that 1 and −1 are real numbers and that f(−1) = 1 = f(1). Therefore, we see that f is not
injective. �
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Surjectivity

Generic Outline of Proof of Surjectivity: The following will be a proof showing that a
function is surjective. To prove that a function f : A→ B is surjective,

1. Let b ∈ B be arbitrary.
2. Give an example of an element a ∈ A so that f(a) = b.

Theorem: The function f : R→ R given by f(x) =
1

2
x+ 4 is surjective.

Proof: Suppose that f : R→ R is given by f(x) =
1

2
x+4. We will show that f is surjective.

Let b ∈ R be arbitrary and let a = 2b− 8. Then, a ∈ R. It follows that

f(a) =
1

2
(a) + 4

=
1

2
(2b− 8) + 4

= b− 4 + 4

= b.

Thus, there is an a ∈ R so that f(a) = b. Therefore, f is surjective. �
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non-Surjectivity

Generic Outline of Proof of non-Surjectivity: The following proof is an example of a
proof showing that a function is not surjective. To show that a function f : A → B is not
surjective,

1. Give an example of an element b ∈ B so that there can be no a ∈ A with f(a) = b.

Theorem: The function f : R→ R given by f(x) = 4x2 + 9 is not surjective.

Proof: We will prove that the function f : R→ R given by f(x) = 4x2 + 9 is not surjective.
Note that for all x ∈ R, f(x) = 4x2+9 ≥ 9. Therefore, there can be no x ∈ R with f(x) = 4.
Thus, f is not surjective. �
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Bijectivity

Generic Outline of Proof of Bijectivity: The following will be an example of a proof
showing that a function is bijective. To prove that a function f : A→ B is bijective,

1. Prove that f is injective.
2. Prove that f is surjective.

Theorem: Suppose that D is the set of all odd integers. The function f : Z→ D given by
f(x) = 2x+ 1 is bijective.

Proof: Suppose that D is the set of all odd integers. We will prove that the function
f : Z → D given by f(x) = 2x + 1 is bijective. We will first show that f is injective, then
we will show that f is surjective. Let x, y ∈ Z and suppose that f(x) = f(y). That is

2x+1 = 2y+1. Subtracting 1 and multiplying by
1

2
yields x = y. Therefore, if f(x) = f(y)

then x = y. Thus, f is injective.

Now, we will show that f is surjective. Let b ∈ D and let a =
1

2
b −

1

2
. Then a ∈ Z. It

follows that

f(a) = 2(a) + 1

= 2(
1

2
b−

1

2
) + 1

= b− 1 + 1

= b.

Thus, there is an a ∈ Z so that f(a) = b. Therefore, f is surjective. Since f is injective and
surjective, we can conclude that f is bijective. �
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Equivalence Relation

Generic Outline of Equivalence Relation Proof: The following proof will be an exam-
ple of a proof showing that a relation is an equivalence relation. To prove that a relation R

is an equivalence relation,
1. Show that R is reflexive.
2. Show that R is symmetric.
3. Show that R is transitive.

Theorem: Suppose R is a relation on R defined by xRy if and only if 2 cos(x) = 2 cos(y).
Then, R is an equivalence equation.

Proof: Suppose R is a relation on R defined by xRy if and only if 2 cos(x) = 2 cos(y). We
will prove that R is an equivalence equation. First, let x ∈ R. Since 2 cos(x) = 2 cos(x) is
true, xRx. Thus R is reflexive.

Next, let x, y ∈ R and suppose that xRy. That means 2 cos(x) = 2 cos(y). So, it is also
true that 2 cos(y) = 2 cos(x). Since xRy implies yRx, R is symmetric.

Finally, let x, y, z ∈ R and suppose that xRy and yRz. That means 2 cos(x) = 2 cos(y)
and 2 cos(y) = 2 cos(z). Therefore, 2 cos(x) = 2 cos(z). Thus R is transitive. Since R is
reflexive, symmetric, and transitive, R we see that R is an equivalence relation on R. �
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Cardinality

Generic Outline of Cardinality Proof: The following will be an example of a cardinality
proof. To prove that two sets A and B have the same cardinality, exhibit a bijection from
A to B.

Theorem: Suppose that D is the set of all odd natural numbers. The set D has the same
cardinality as the set of all natural numbers.

Proof: Suppose that D is the set of all odd natural numbers. D has the same cardinality as
the set of all natural numbers, because the function f : N→ D given by f(x) = 2x+ 1 is a
bijection. �
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Cantor-Schroeder-Bernstein

Generic Outline of Cantor-Schroeder-Bernstein Proof: The following will be an ex-
ample of a proof using the Cantor-Schroeder-Bernstein theorem. To prove that two sets A
and B have the same cardinality,

1. Exhibit an injection from A to B.
2. Exhibit an injection from B to A.

Theorem: The cardinality of the interval [1, 3] is the same as the cardinality of the interval
(2, 10).

Proof: We will prove that the cardinality of the interval [1, 3] is the same as the cardinality
of the interval (2, 10). Note that the function f : [1, 3] → (2, 10) given by f(x) = x2 + 1 is

injective. Also note that the function g : (2, 10)→ [1, 3] given by g(x) = (x+1)
1

2 is injective.
Since there is an injection from [1, 3] to (2, 10) and an injection from (2, 10) to [1, 3], we can
conclude that |[1, 3]| = |(2, 10)|. �
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