Direct Proof

Generic Outline of Direct Proof: The following proof will be an example of a direct proof. To prove an implication $P \rightarrow Q$,

- 1. Suppose P.
- 2. Prove Q.

Definitions:

- 1. A natural number n is **yellow** if there exists a natural number k so that n = 4k.
- 2. A natural number n is green if there exists a natural number k so that n = 4k + 1.
- 3. A natural number n is **pink** if there exists a natural number k so that n = 4k + 2.

4. A natural number n is **brown** if there exists a natural number k so that n = 4k + 3.

Theorem: If a natural number n is yellow, then n^2 is also yellow.

Proof: Suppose that n is a natural number. We will show that if n is yellow, then n^2 is yellow. First, let n be yellow. By the definition of yellow, there exists a natural number k so that n = 4k. It follows that

$$n^2 = (4k)^2$$

= $16k^2$
= $4(4k^2)$.

By the definition of yellow, we see that if n is yellow, then n^2 is also yellow.

Cases

Generic Outline of Cases Proof: The following proof will be an example of a cases proof. To prove a implication $(P \lor Q) \to R$,

- 1. Prove $P \to R$.
- 2. Prove $Q \to R$.

Definitions:

- 1. An integer n is **yellow** if there exists an integer k so that n = 4k.
- 2. An integer n is green if there exists an integer k so that n = 4k + 1.
- 3. An integer n is **pink** if there exists an integer k so that n = 4k + 2.
- 4. An integer n is **brown** if there exists an integer k so that n = 4k + 3.

Lemma 1: An integer n is yellow if and only if $n \equiv_4 0$.

Proof: Suppose that n is yellow. This means that there is an integer k with n = 4k. It follows that 4k = (n - 0) and $n \equiv_4 0$. Now suppose that $n \equiv_4 0$. This means that 4k = (n - 0) so there exists a $k \in \mathbb{Z}$ so that 4k = n - 0. Then, 4k = n; thus n is yellow.

Lemma 2: An integer n is green if and only if $n \equiv_4 1$.

Proof: Suppose that n is green. This means that there is an integer k with n = 4k + 1. It follows that 4k = (n - 1) and $n \equiv_4 1$. Now suppose that $n \equiv_4 1$. This means that there exists a $k \in \mathbb{Z}$ so that 4k = (n - 1), so 4k = n - 1. Then, 4k + 1 = n; thus n is green.

Lemma 3: An integer n is pink if and only if $n \equiv_4 2$.

Proof: Suppose that n is pink. This means that there is an integer k with n = 4k + 2. It follows that 4k = (n - 2) and $n \equiv_4 2$. Now suppose that $n \equiv_4 2$. This means that 4k = (n - 2) for some $k \in \mathbb{Z}$, so 4k = n - 2. Then, 4k + 2 = n; thus n is pink.

Lemma 4: An integer n is brown if and only if $n \equiv_4 3$.

Proof: Suppose that n is brown. This means that there is an integer k with n = 4k + 3. It follows that 4k = (n - 3) and $n \equiv_4 3$. Now suppose that $n \equiv_4 3$. This means that 4k = (n - 3) for some $k \in \mathbb{Z}$, so 4k = n - 3. Then, 4k + 3 = n; thus n is brown.

Theorem: Every integer n is exactly one of yellow, green, pink, or brown.

Proof: Let $n \in \mathbb{Z}$. We can apply the division algorithm to express n = 4q + r where q and r are unique with $0 \leq r < 4$. Since $0 \leq r < 4$, we know that r is either 0, 1, 2, or 3. If r = 0, then by the definition of equivalence modulo, $n \equiv_4 0$ then by Lemma 1, n is yellow. If r = 1, then by the definition of equivalence modulo, $n \equiv_4 1$ then by Lemma 2, n is green. If r = 2, then by the definition of equivalence modulo, $n \equiv_4 2$ then by Lemma 3, n is pink. If r = 3, then by the definition of equivalence modulo, $n \equiv_4 2$ then by Lemma 4, n is brown. Thus

a number is either yellow, green, pink, or brown. Since, q and r are unique, we see that n cannot be more than one of yellow, green, pink, or brown.

Biconditional

Generic Outline of Biconditional Proof: The following proof will be an example of a biconditional proof. To prove a biconditional $P \leftrightarrow Q$,

- 1. Prove $P \to Q$.
- 2. Prove $Q \to P$.

Theorem: Let n be a natural number. Then n is even if and only if n^2 is even.

Proof: Let n be a natural number. We will prove that n is even if and only if n^2 is even. First, we will show that if n is even, then n^2 is even. Then, we will show that if n^2 is even, then n is even. Suppose that n is even. That means that 2|n. By the definition of divides, there is some natural number k so that n = 2k. It follows that

$$n^2 = (2k)^2$$

= $4k^2$
= $2(2k^2)$.

By the definition of even, we see that if n is even, then n^2 is also even.

Next, we will show that if n^2 is even, then n is even. We will use the contrapositive to show this. The contrapositive states "if n is not even, then n^2 is not even." Suppose that n is not even, that is n is odd. By the definition of odd, there exists some natural number k so that n = 2k + 1. It follows that

$$(2k+1)^2 = 4k^2 + 4k + 1$$

= 2(2k² + 2k) + 1

Thus we see that if n is odd, then n^2 is odd. Therefore, we see that if n is not even, then n^2 is not even, affirming the contrapositive. Hence, we have proven that n is even if and only if n^2 is even.

Disjunction

Generic Outline of Disjunction Proof: The following proof will be an example of a disjunction proof. To prove a disjunction $P \lor Q$,

- 1. Suppose $\neg P$.
- 2. Prove Q.

Theorem: Suppose that p is a prime number and that $a, b \in \mathbb{N}$ so that p|ab. Then, either p|a or p|b.

Proof: Let a and b be natural numbers. Suppose that p is a prime number and that p|ab. We will prove that either p|a or p|b. To do so, now suppose that p does not divide a. We must show that p|b. Since p does not divide a, and since p is prime, the greatest common divisor of p and a is 1. By the Euclidean Algorithm, we see that there are $x, y \in \mathbb{Z}$ so that 1 = xp + ya. Multiplying this by b yields b = bxp + yab. Since p|ab, by definition of divides, there exists a $k \in \mathbb{N}$ so that pk = ab. It follows that

$$b = bxp + ykp$$
$$= p(bx + yk)$$

Since bx + yk is a natural number, we see that p|b. Thus, if $p \not| a$ we see that p|b. Therefore, p|a or p|b.

Contrapositive

Generic Outline of Contrapositive Proof: The following proof will be an example of a contrapositive proof. To prove an implication $P \to Q$,

- 1. Suppose $\neg P$.
- 2. Prove Q.

Definitions:

- 1. A natural number n is yellow if there exists a natural number k so that n = 4k.
- 2. A natural number n is green if there exists a natural number k so that n = 4k + 1.
- 3. A natural number n is **pink** if there exists a natural number k so that n = 4k + 2.
- 4. A natural number n is **brown** if there exists a natural number k so that n = 4k + 3.

Theorem: Let n be a natural number. If 3n + 1 is yellow, then n is green.

Proof: Suppose that n is a natural number. We will prove that if 3n + 1 is yellow, then n is green. To do this, we will use the contrapositive which states, "If n is not green, then 3n + 1 is not yellow." Suppose that n is not green. Since a natural number can be precisely one of yellow, green, pink, or brown, if n is not green, n is either yellow, pink, or brown. First, suppose that n is yellow. By the definition of yellow, there exists a natural number k so that n = 4k. It follows that

$$3n + 1 = 3(4k) + 1$$

= $12k + 1$
= $4(3k) + 1$

Thus, by the definition of green, we see that if n is yellow, then 3n+1 is green and not yellow.

Next, suppose that n is pink. By the definition of pink, there exists a natural number k so that n = 4k + 2. It follows that

$$3n + 1 = 3(4k + 2) + 1$$

= 12k + 7
= 4(3k + 1) + 3

Thus, by the definition of brown, we see that if n is pink, then 3n+1 is brown and not yellow.

Next, suppose that n is brown. By the definition of brown, there exists a natural number k so that n = 4k + 3. It follows that

$$3n + 1 = 3(4k + 3) + 1$$

= $12k + 10$
= $4(3k) + 2$

Thus, by the definition of pink, we see that if n is brown, then 3n + 1 is pink and not yellow.

Therefore, we see that when n is not green, 3n + 1 is not yellow affirming the contrapositive. Consequently, we have shown that if 3n + 1 is yellow, then n is green.

Contradiction

Generic Outline of Contradiction Proof: The following proof will be an example of a contradiction proof. To prove P, 1. Suppose $\neg P$.

2. Show a contradiction.

Theorem: There are infinitely many prime numbers.

Proof: We will prove by contradiction that there are infinitely many prime numbers. Assume the contrary, that there are a finite number of prime numbers. We will denote all the prime numbers as $p_1, p_2, p_3, \dots, p_n$ where p_n is the last prime number. Consider the number $q = p_1(p_2)(p_3) \cdots (p_n) + 1$. The number q is either prime or composite. If we divide any of the listed primes p_i into q, there would result a remainder of 1 for each $i = 1, 2, 3, \dots n$. Thus, we see that q is not composite. Since a number is either prime or composite, q must be prime yet not included in the list $p_1, p_2, p_3, \dots, p_n$. This is a contradiction, because the list of all prime numbers does not include the prime number q. Therefore, we see that there are infinitely many prime numbers.

Induction

Generic Outline of Proof by Induction: The following proof will be an example of an induction proof. To prove that P(n) is true for all integers $n \ge m$,

- 1. Prove P(m).
- 2. Let $k \in \mathbb{Z}$ with $m \leq k$.
- 3. Suppose P(k).
- 4. Prove P(k+1).

Theorem: For any natural number n, $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} < 2$

Proof: Let P(n) be the open statement " $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} < 2$." We will prove through mathematical induction that P(n) is true for all natural numbers. First, note that P(0) is true, because $\frac{1}{2^0} = 1 < 2$. Next, suppose that P(k) is true for some natural number k. That means $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^k} < 2$. Observe that multiplying by $\frac{1}{2}$ yields $\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^k} + \frac{1}{2^{k+1}} < 1$. Then adding 1 gives $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^k} + \frac{1}{2^{k+1}} < 2$

Thus, we see that P(0) is true and that P(k) implies P(k+1) for all $k \in \mathbb{N}$. By mathematical induction, we can conclude that P(n) is true for all natural numbers.

Subset

Generic Outline of Subset Proof: The following proof will be an example of a subset proof. To prove that a set A is a subset of a set B,

- 1. Let $a \in A$.
- 2. Prove $a \in B$.

Theorem: Suppose that set A is defined by $A = \{n \in \mathbb{N} : 6|n\}$, and suppose set B is defined by $B = \{n \in \mathbb{N} : 2|n\}$. Then, $A \subseteq B$.

Proof: Suppose that set A is defined by $A = \{n \in \mathbb{N} : 6|n\}$, and suppose set B is defined by $B = \{n \in \mathbb{N} : 2|n\}$. We will prove that $A \subseteq B$. Let $x \in A$ be arbitrary. By the definition of A, 6|x. By the definition of divides, there exists some natural number k so that x = 6k. It follows that x = 2(3k). Thus, we see that 2|x. Therefore x is also in B. Since an arbitrary element of A is also an element in B, we see that $A \subseteq B$.

Generic Outline of Proof of Set Equality: The following proof will be an example of a set equality proof. To prove that a set A equals a set B,

- 1. Prove $A \subseteq B$. 2. Prove $B \subseteq A$.
- 2. Prove $B \subseteq A$.

Theorem: Let A, B, and C be sets. Then $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof: Let A, B, C be sets. We will prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. First, we will show that $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Then we will show that $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Suppose that $x \in A \cap (B \cup C)$. By the definition of intersection, $x \in A$. and $x \in (B \cup C)$. By the definition of union, $x \in B$ or $x \in C$. If $x \in B$, then $x \in A$ and $x \in B$, so $x \in (A \cap B)$. If $x \in C$, then $x \in A$ and $x \in C$, so $x \in (A \cap C)$. We see that either $x \in (A \cap B)$ or $x \in (A \cap C)$. By the definition of union, this means that $x \in (A \cap B) \cup (A \cap C)$. Therefore, we can conclude that $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Next let $x \in (A \cap B) \cup (A \cap C)$. By the definition of union, $x \in (A \cap B)$ or $x \in (A \cap C)$. According to the definition of intersection, either $x \in A$ and $x \in B$, or $x \in A$ and $x \in C$. By the distributive law, $x \in A$ and $x \in B$ or $x \in C$. By the definition of union, $x \in A$, and $x \in (B \cup C)$. By the definition of intersection, $x \in A \cap (B \cup C)$. Thus, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Since $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ and $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$, then we can conclude that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Existential

Generic Outline of Proof of an Existential Statement: The following is an example of an existential statement proof. To prove an existential statement, exhibit an instance when the statement is true.

Theorem: There exists a natural number k so that $k^k = k + k$.

Proof: We will prove that there exists a natural number k so that $k^k = k + k$. Note that $2^2 = 4$ and 2 + 2 = 4. Thus 2 is an example of a natural number k that satisfies $k^k = k + k$.

Universal

Generic Outline of Proof of a Universal Statement: The following is an example of a universal statement proof. To show that a statement is true for all

Theorem: For all odd natural numbers n, $2n^2 + 44n - 23$ is odd.

Proof: Let n be an odd natural number. We will prove that $2n^2 + 44n - 23$ is odd. Note that

$$2n^2 + 44n - 23 = 2(n^2 + 22n - 12) + 1.$$

Thus, we see by the definition of odd that, $2n^2 + 44n - 23$ is odd.

Inverse Function

Generic Outline of Proof that two functions are inverses: The following will be an example of a proof showing that two functions are inverses. To prove that $g: B \to A$ is the inverse of $f: A \to B$,

1. Let $a \in A$ 2. Prove g(f(a)) = a3. Let $b \in B$ 4. Prove f(g(b)) = b

Theorem: The functions $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = 4x - 16 and $g : \mathbb{R} \to \mathbb{R}$ given by $g(x) = \frac{1}{4}x + 4$ are inverses.

Proof: We will show that the functions $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = 4x - 16 and $g : \mathbb{R} \to \mathbb{R}$ given by $g(x) = \frac{1}{4}x + 4$ are inverses. Let $a \in \mathbb{R}$ be arbitrary. It follows that

$$g(f(a)) = \frac{1}{4}(f(a)) + 4$$

= $\frac{1}{4}(4a - 16) + 4$
= $a - 4 + 4$
= a .

Thus we see that g(f(a)) = a for any $a \in \mathbb{R}$.

Next, let $b \in \mathbb{R}$ be arbitrary. It follows that

$$f(g(b)) = 4(f(b)) - 16$$

= $4(\frac{1}{4}b + 4) - 16$
= $b + 16 - 16$
= b .

Thus we see that f(g(b)) = b for any $b \in \mathbb{R}$. Therefore, we can conclude that f and g are inverses.

Injectivity

Generic Outline of Proof of Injectivity: The following will be an example of a proof showing that a function is injective. To prove a function's injectivity,

- 1. Suppose f(x) = f(y).
- 2. Prove x = y.

Theorem: Suppose that $f:[0,1] \to \mathbb{R}$ given by $f(x) = x^2$ is a function. Then f is injective.

Proof: Suppose that $f:[0,1] \to \mathbb{R}$ given by $f(x) = x^2$ is a function. We will prove that f is injective. Let $x, y \in [0,1]$ and suppose that f(x) = f(y). Then $x^2 = y^2$. Taking the square root yields $\pm x = \pm y$. Since $x, y \in [0,1]$, x and y are never negative; thus x = y. Therefore, we see that if f(x) = f(y), then x = y. Consequently, f is injective.

Generic Outline of Proof of non-Injectivity: The following will be an example of a proof showing that a function is not injective. To prove a function $f : A \to B$ is not injective,

1. Give an example of $x, y \in A$ so that $x \neq y$ but f(x) = f(y).

Theorem: The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ is not injective.

Proof: We will show that the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ is not injective. Note that 1 and -1 are real numbers and that f(-1) = 1 = f(1). Therefore, we see that f is not injective.

Surjectivity

Generic Outline of Proof of Surjectivity: The following will be a proof showing that a function is surjective. To prove that a function $f : A \to B$ is surjective,

- 1. Let $b \in B$ be arbitrary.
- 2. Give an example of an element $a \in A$ so that f(a) = b.

Theorem: The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{1}{2}x + 4$ is surjective.

Proof: Suppose that $f : \mathbb{R} \to \mathbb{R}$ is given by $f(x) = \frac{1}{2}x + 4$. We will show that f is surjective. Let $b \in \mathbb{R}$ be arbitrary and let a = 2b - 8. Then, $a \in \mathbb{R}$. It follows that

$$f(a) = \frac{1}{2}(a) + 4$$

= $\frac{1}{2}(2b - 8) + 4$
= $b - 4 + 4$
= b .

Thus, there is an $a \in \mathbb{R}$ so that f(a) = b. Therefore, f is surjective.

non-Surjectivity

Generic Outline of Proof of non-Surjectivity: The following proof is an example of a proof showing that a function is not surjective. To show that a function $f : A \to B$ is not surjective,

1. Give an example of an element $b \in B$ so that there can be no $a \in A$ with f(a) = b.

Theorem: The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 4x^2 + 9$ is not surjective.

Proof: We will prove that the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 4x^2 + 9$ is not surjective. Note that for all $x \in \mathbb{R}$, $f(x) = 4x^2 + 9 \ge 9$. Therefore, there can be no $x \in \mathbb{R}$ with f(x) = 4. Thus, f is not surjective.

Bijectivity

Generic Outline of Proof of Bijectivity: The following will be an example of a proof showing that a function is bijective. To prove that a function $f : A \to B$ is bijective,

- 1. Prove that f is injective.
- 2. Prove that f is surjective.

Theorem: Suppose that D is the set of all odd integers. The function $f : \mathbb{Z} \to D$ given by f(x) = 2x + 1 is bijective.

Proof: Suppose that D is the set of all odd integers. We will prove that the function $f: \mathbb{Z} \to D$ given by f(x) = 2x + 1 is bijective. We will first show that f is injective, then we will show that f is surjective. Let $x, y \in \mathbb{Z}$ and suppose that f(x) = f(y). That is 2x + 1 = 2y + 1. Subtracting 1 and multiplying by $\frac{1}{2}$ yields x = y. Therefore, if f(x) = f(y) then x = y. Thus, f is injective.

Now, we will show that f is surjective. Let $b \in D$ and let $a = \frac{1}{2}b - \frac{1}{2}$. Then $a \in \mathbb{Z}$. It follows that

$$f(a) = 2(a) + 1$$

= $2(\frac{1}{2}b - \frac{1}{2}) + 1$
= $b - 1 + 1$
= b .

Thus, there is an $a \in \mathbb{Z}$ so that f(a) = b. Therefore, f is surjective. Since f is injective and surjective, we can conclude that f is bijective.

Equivalence Relation

Generic Outline of Equivalence Relation Proof: The following proof will be an example of a proof showing that a relation is an equivalence relation. To prove that a relation R is an equivalence relation,

- 1. Show that R is reflexive.
- 2. Show that R is symmetric.
- 3. Show that R is transitive.

Theorem: Suppose R is a relation on \mathbb{R} defined by xRy if and only if $2\cos(x) = 2\cos(y)$. Then, R is an equivalence equation.

Proof: Suppose R is a relation on \mathbb{R} defined by xRy if and only if $2\cos(x) = 2\cos(y)$. We will prove that R is an equivalence equation. First, let $x \in \mathbb{R}$. Since $2\cos(x) = 2\cos(x)$ is true, xRx. Thus R is reflexive.

Next, let $x, y \in \mathbb{R}$ and suppose that xRy. That means $2\cos(x) = 2\cos(y)$. So, it is also true that $2\cos(y) = 2\cos(x)$. Since xRy implies yRx, R is symmetric.

Finally, let $x, y, z \in \mathbb{R}$ and suppose that xRy and yRz. That means $2\cos(x) = 2\cos(y)$ and $2\cos(y) = 2\cos(z)$. Therefore, $2\cos(x) = 2\cos(z)$. Thus R is transitive. Since R is reflexive, symmetric, and transitive, R we see that R is an equivalence relation on \mathbb{R} . \Box

Cardinality

Generic Outline of Cardinality Proof: The following will be an example of a cardinality proof. To prove that two sets A and B have the same cardinality, exhibit a bijection from A to B.

Theorem: Suppose that D is the set of all odd natural numbers. The set D has the same cardinality as the set of all natural numbers.

Proof: Suppose that D is the set of all odd natural numbers. D has the same cardinality as the set of all natural numbers, because the function $f : \mathbb{N} \to D$ given by f(x) = 2x + 1 is a bijection.

Cantor-Schroeder-Bernstein

Generic Outline of Cantor-Schroeder-Bernstein Proof: The following will be an example of a proof using the Cantor-Schroeder-Bernstein theorem. To prove that two sets A and B have the same cardinality,

- 1. Exhibit an injection from A to B.
- 2. Exhibit an injection from B to A.

Theorem: The cardinality of the interval [1, 3] is the same as the cardinality of the interval (2, 10).

Proof: We will prove that the cardinality of the interval [1,3] is the same as the cardinality of the interval (2,10). Note that the function $f:[1,3] \to (2,10)$ given by $f(x) = x^2 + 1$ is injective. Also note that the function $g:(2,10) \to [1,3]$ given by $g(x) = (x+1)^{\frac{1}{2}}$ is injective. Since there is an injection from [1,3] to (2,10) and an injection from (2,10) to [1,3], we can conclude that |[1,3]| = |(2,10)|.