Direct Proof

Generic Outline of Direct Proof:
To prove an implication P — @),

1. Suppose P.
2. Prove Q.

Theorem: For any natural numbers [, m, and n, if n < m then nl < ml

Proof: Suppose [,m,n are natural numbers and n < m. We will show nl < ml. By the
definition of order, there is a natural number & so that n+k = m. It follows that nl+kl = ml
so nl < ml. Therefore, for any natural numbers [, m,n, if n < m then nl < ml. O



Biconditional

Generic Outline of Biconditional Proof:
To prove a biconditional P < @,

1. Prove P — Q.
2. Prove () — P.

Theorem: An integer n is even if and only if n + 2 is even.

Proof: Suppose that n € Z. We will show that n is even if and only if n + 2 is even. First,
we suppose that n is even. By the definition of even, 2|n. By the definition of divisibility,
there is a k € Z so that n = 2k. Adding two to both sides gives n +2 = 2k +2 = 2(k + 1).
Hence, 2|(n + 2). Therefore, n + 2 is even.

Next, suppose n + 2 is even. By the definition of even, 2|(n + 2). By the definition of
divisibility, there is a natural number [ so that n + 2 = 2[. Subtracting two from both sides
gives n = 2l —2 = 2(l — 1) + 2. Hence, 2|(n+2). Thus, n is even. Therefore, n is even when
n + 2 is even.

We have shown that an integer n is even if and only if n + 2 is even. 0



Disjunction
Generic Outline of Disjunction Proof:
To prove a disjunction PV @,

1. Suppose —P.

2. Prove Q).

Theorem: If n is a natural number, either n is even or 3n is odd.

Proof: Suppose n is a natural number. We will prove that either n is even or 3n is odd. To
do so, suppose n is not even. Since every number is either even or odd and not both, n is
odd. We must show 3n is odd. By definition of odd, there is a natural number & so that
n = 2k + 1. It follows that

3n=312k+1)
=6k +3
=06k+2+1
=203k + 1) + 1.

Thus, 3n is odd.

We have shown if n is not even, then 3n is odd. Therefore, if n is a natural number,
either n is even, or 3n is odd. 0



Contrapositive

Generic Outline of Contrapositive Proof:
To prove P — (),

1. Sppose —Q.
2. Prove —P.

Theorem: For any number n, if n® is even, then n is even.

Proof: Let n be a natural number. We will use the contrapositive to prove that if n® is even,
then n is even. The contrapositive is, “If n is not even, then n® is not even.” Suppose n is
not even. Since every number is either even or odd, n is odd. Since n is odd, there is some
natural number £ so that n = 2k + 1. It follows that

n® = (2k +1)*
= 8k® + 12k + 6k + 1
= 2(4k® + 6Kk* + 3k) + 1.
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Hence, n° is odd, and not even.

We have proven that if n is not even, then n? is not even. This is the contrapositive of

the theorem. ]



Contradiction

Generic Outline of Contradiction Proof:
To prove P,

1. Suppose —P.
2. Prove a contradiction.

3. Conclude P.

Theorem: If n is a natural number and n® is odd, then n is odd.

Proof: Suppose that n is a natural number and than n® is odd. We will use contradiction to
prove that n is odd. Suppose n is not odd. Then n is even and there is a natural number &
so that n = 2k. It follows that

n’ = (2k)?
= 8k?
= 2(4k?).
so n” is even. But then n? is both odd and even. This contradicts the theorem stating every

natural number is even or odd and not both, so the assumption that n is not odd must be
false. Therefore, it has to be the case that n is odd. [l



Induction

Generic Outline of Proof by Induction:
To prove that P(n) is true for all integers n > m,

1. Prove P(m).

2. Let k € Z with m < k.
3. Suppose P(k).

4. Prove P(k +1).

Theorem: For any natural number n, 5" + 1 is divisible by 6.

Proof: Let P(n) be the open statement “5***! 4 1 is divisible by 6”. We will use induction
to show that P(n) is true for all natural numbers n. First, note that 5*°*! + 1 is divisible
by 6, so P(0) is true. Next, suppose P(k) is true for some natural number k. That is, we
are assumming 5! + 1 is divisible by 6. This means there is a natural number [ so that

5%+ 4+ 1 = 61. Observe
52(k’+1)+1 + 1 _ 52]€+3 ‘l’ 1

— 52k+152 + 1
=52+l o5 41
=5%1(4.6+1)+1
:52k+1‘4'6+52k+1+1
= 5%+ 4.6+ 61
=6(5% . 4+1)

From the definition of divisibilty, we see that 6 divides 52**D*1 11 so P(k 4 1) is true.
That is, if P(k) is true, so is P(k + 1).

We have established that P(0) is true and that P(k) implies P(k + 1) for all natural
numbers k. By mathematical induction, we can conclude that P(n) is true for all natural
numbers 7n. U



Subset

Generic Outline of Subset Proof:
To prove that a set A is a subset of a set B,

1. Let a € A.
2. Prove a € B.
Theorem: Theset A = {z € R: x*—4 = 0} is a subset of theset B = {z € R: 2*—16 = 0}.
Proof: Suppose = € A is arbitrary. This means that 22 —4 = 0, so
7t —16 = (2 —4)(2* +4) =0 (2> +4) = 0.

Hence, z € B. Thus every element of A is an element of B. 0



Set Equality

Generic Outline of Proof of Set Equality:
To prove a set A equals a set B,

1. Prove A C B.
2. Prove B C A.

Theorem: If A and B are sets then A — (BUC) =(A—B)N(A-C).
Proof: Let A, B, and C be sets. We will prove that
A—(BUC)=(A-B)n(A-2C).

First, suppose that x € A — (B U C). From the definition of difference, this means that
x € Aand z ¢ (BUC). From the definition of union and DeMorgan’s Law, x ¢ B and
x ¢ C. Since x ¢ B, thenx € Aand x ¢ B,soz € (A— B). Since x ¢ C, then z € A
and x € C,so x € (A—C). We see that © € (A — B) and = € (A — (). This means that
r€(A—-B)N(A—C). Thus,

A—(BUC)C(A-B)N(A-20).

Now, let x € (A— B)N(A—C). This means that t € Aand z ¢ Band x € Aand x & C.
Thus using DeMorgan’s Law, z € A and « ¢ (B U C). This means z € A — (B UC). Thus,

(A—-B)N(A-C)CA—-(BUCQ).

Since

A—(BUC)C(A-B)Nn(A-C)
and

(A—B)N(A-C)CA—(BNCQC)
we know

A—(BUC)=(A-B)Nn(A-0).



Existential

Generic Outline of Proof of an Existential Statement:
To prove (Jz € A)P(x)

1. Exhibit some x € A so P(z) is true.

Theorem: Let f : R — R be defined by f(x) = 2>+5. There is an x € N so that f(z) is even.

Proof: Let « € N. Note that f(3) = 14. O



Universal

Generic Outline of Proof of a Universal Statement:
To prove (Vo € A)P(z))

1. Let x € A.
2. Show P(x).
Theorem: For all natural numbers n, 2n + 3 is odd.
Proof: Suppose that n is any natural number. We will prove that 2n + 3 is odd. Note that

nn+3=2n+2+1
=2n+1)+1.

Therefore, 2n + 3 is odd for all natural numbers n. O
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Cases

Generic Outline of Proof by Cases:
To prove (P V Q) — R,

1. Prove P — R.
2. Prove Q — R.

Theorem: If n is a natural number, then n® + 3n is even.

Proof: Suppose that n is a natural number. We will prove that n® + 3n is even. There are
two cases - either n is even or n is odd. Suppose first that n is even. Then there is a natural
number £ so that n = 2k. It follows that

n® + 3n = (2k)* + 3(2k)
= 8k* + 6k
= 2(4k> + 3k).

Thus 2|(n® 4 3n). Therefore, if n is even, then n® + 3n is even.

Next, suppose that n is odd. Then there is a natural number k so that n = 2k + 1. It
follows that

n® +3n = (2k +1)° + 3(2k + 1)
= (2k + 1)(4lk* + 4k + 1) + 61 + 3
= 8k% + 12k* + 6k + 4
= 2(4k> + 6k* 4 3k + 2).

Thus, 2|(n® + 3n). Therefore, if n is odd, then n® 4 3n is also even.

We have proven that if n is either even or odd, then n® + 3n is even. Since every natural
number is either even or odd, n® 4+ 3n is even for all natual numbers n. [l
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Inverse Function

Generic Outline of Proof that two functions are inverses:
To prove that f: A — B and g : B — A are inverses,

1. Let a € A.
2. Prove g(f(a)) = a.
3. Let be B.

4. Prove that f(g(b)) = b.

is the inverse of the function

Theorem: The function f : R — R given by f(x) = -
g: R — R given by g(z) = 3z + 2.

Proof: Let a € R. We calculate f(g(a)).

~ (Ba+2)—-2
B 3

_ 3a

T3

=q.

Thus, f(g(a)) = a.

Next, we let b € R. We calculate g(f(b)).

a0 =3 ("5
= 3(b_T2) +1
=b-1)+1
=b.
Thus, g(f(b)) = b.
Since f(g(a)) = a and g(f(b)) = b for all @ and b in R, f is the inverse of g. O
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Injectivity

Generic Outline of Proof of Injectivity:
To prove that a function f: A — B is injective,

1. Let z,y € A.
2. Suppose that f(x) = f(y).
3. Prove that x = y.

Theorem: The function f: R — R given by f(z) =z — 1 is injective.
Proof: Let x,y € R and assume that f(z) = f(y). We will show that x = y. Since

f(z) = f(y), it follows that x — 1 = y — 1. Adding 1 to both sides of this equation yields
x =y. We have shown that if f(z) = f(y) then z = y. It follows that f is injective. O
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non-Injectivity

Generic Outline of Proof of non-Injectivity:
To show a function T': A — B is not injective, exhibit two elements x and y in A so that

x #y but f(z) = f(y).
Theorem: The function f : R — R given by f(z) = 2% + 2 is not injective.

Proof: Let f : R — R be given by f(z) = 2* + 2. Note that f(—1) = 3 = f(1). Since
—1+# 1, f is not injective. O
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Surjectivity

Generic Outline of Proof of Surjectivity:
To prove that a function f : A — B is surjective,

1. Let b e B.
2. Exhibit an a € A with f(a) = 0.

Theorem: The function f : R — R given by f(z) = 42" + 3 is surjective.

Proof: We prove that the function f(z) = 42" 4+ 3 from R to R is surjective. Let b € R, and

b—3\7
let a = o . Note that a € R and

b—3
=4 — 3
)
—(b-3)+3
=b.
Thus, for every b € R, there is an a € R with f(a) = b. The function f is surjective. O
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non-Surjectivity

Generic Outline of Proof of non-Surjectivity:

To show that a transformation 7' : A — B is not surjective, exhibit an element b € B so
that there can be no a € A with T'(a) = b.

Theorem: The function f(z) = 2* + 2 from R to R is not surjective.

Proof: Notice that for all + € R, f(z) = 2* 42 > 2. Therefore, there can be no z € R with
f(z) = 0. Hence f is not surjective. O
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Bijectivity
Generic Outline of Proof of Bijectivity:
To prove that a function f: A — B is bijective,
1. Prove that f is injective.
2. Prove that f is surjective.

Theorem: The function f : R — R given by f(z) = 2* + 3 is bijective.

Proof: Let f : R — R be the function given by f(x) = z® + 3. We will prove f is bijec-
tive. By the definition of bijective, f is a bijection if and only if f is both injective and
surjective. First, we will prove f is injective. Let x,y € R, and suppose f(z) = f(y). Then
x> 4+ 3 = y® + 3. Subtracting 3 and taking the cube root of both sides of the equation gives
x =1y. Thus, f is injective.

Next, we will prove f is surjective. Let b € R. Let a = (b — 3)%. Then, a € R and

fla)=a*>+3
= ((b=3)5 +3)
=0b-3)+3
=b.
Thus, f is surjective.
We have proven that f is both injective and surjective. Hence, f is bijective. O
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Equivalence Relation

Generic Outline of Equivalence Relation Proof:
To prove that a binary relationR on a set A is an equivalence relation,

1. Prove that R is reflexive.
2. Prove that R is symmetric.
3. Prove that R is transitive.

Theorem: R is the relation on R defined by xRy if 2® = .

Proof: Let R be the relation on R efined by xRy if 2* = y*. We will prove that R is an
equivalence relation on R. First, we will show R is reflexive. Let x € R. Since x = z, it
follows that 2® = 2®. Hence xRz for all z € R. Therefore, R is reflexive.

Next, we will show R is symmetric. Let x,y € R be arbitrary and suppose zRy. This
means z° = 3* then y® = 2® so yRz. Since xRy implies yRx, R is symmetric.

Finally, we will show R is transitive. Let x,y,2 € R be arbitrary and suppose xRy and

yRz. Then 2® = y® and ¢ = 23, so 2% = 2®. Hence, zRz. Therefore R is transitive.

We have shown R is reflexive, symmetric, and transitive. Therefore, we have proven R
is an equivalence relation on R. O
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Cardinality

Generic Outline of Cardinality Proof:
To prove that two sets A and B have the same cardinality, exhibit a bijection from A to B.

Theorem: If A is the set [0,1] and B is the set [46,52], then |A| = |B].

Proof: Suppose A is the set [0,1] and B is the set [46,52]. We will prove that |A| = |B|. Let
f A — B be the function given by f(z) = 6x + 46. We will prove f is bijective. To prove
f is bijective, we will show f is both injective and surjective.

First, we will show f is injective. Let z,y € R and assume f(x) = f(y). It follows that
6x 4+ 46 = 6y + 46. Subtracting 46 from both sides of the equation gives 6z = 6y. Dividing
6 from both sides yields x = y. Thus, f is injective.

y — 46

Next, we will show f is surjective. Let y € B and let z = . Note that x € A and

flz) =6 (y _646> +46

= (y — 46) + 46
:y‘

Thus, f is surjective.

Therefore, since f is both injective and surjective, we can conclude f is bijective. Since
f is bijective, |A| = |B). O
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Cantor-Schroeder-Bernstein

Generic Outline of Cantor-Schroeder-Bernstein Proof:
To prove two sets A and B have the same cardinality,

1. Exhibit an injection from A to B.
2. Exhibit an injection from B to A.

Theorem: If A is the set (0,1) and B is the set [7,10], then |A| = |B|.

Proof: Suppose A is the set (0,1) and B is the set [7,10]. We will show |A| = | B|. Notice that
the f:(0,1) — [7,10] given by f(z) = 3x + 7 is injective. Also note that ¢ : [7,10] — (0, 1)

is injective. Therefore, we have shown with the Cantor-Schroeder-

given by g(z) = -
Bernstein theorem that |(0,1)| = |[7, 10]|. O
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