Direct Proof

Generic Outline of Direct Proof:

To prove an implication $P \to Q$,

- 1. Suppose P.
- 2. Prove Q.

Theorem: For any natural numbers l, m, and n, if $n \leq m$ then $nl \leq ml$

Proof: Suppose l, m, n are natural numbers and $n \leq m$. We will show $nl \leq ml$. By the definition of order, there is a natural number k so that n+k=m. It follows that nl+kl=ml so $nl \leq ml$. Therefore, for any natural numbers l, m, n, if $n \leq m$ then $nl \leq ml$. \Box

Biconditional

Generic Outline of Biconditional Proof:

To prove a biconditional $P \leftrightarrow Q$,

- 1. Prove $P \to Q$.
- 2. Prove $Q \to P$.

Theorem: An integer n is even if and only if n + 2 is even.

Proof: Suppose that $n \in \mathbb{Z}$. We will show that n is even if and only if n + 2 is even. First, we suppose that n is even. By the definition of even, 2|n. By the definition of divisibility, there is a $k \in \mathbb{Z}$ so that n = 2k. Adding two to both sides gives n + 2 = 2k + 2 = 2(k + 1). Hence, 2|(n + 2). Therefore, n + 2 is even.

Next, suppose n + 2 is even. By the definition of even, 2|(n + 2). By the definition of divisibility, there is a natural number l so that n + 2 = 2l. Subtracting two from both sides gives n = 2l - 2 = 2(l - 1) + 2. Hence, 2|(n + 2). Thus, n is even. Therefore, n is even when n + 2 is even.

We have shown that an integer n is even if and only if n + 2 is even.

Disjunction

Generic Outline of Disjunction Proof:

To prove a disjunction $P \lor Q$,

- 1. Suppose $\neg P$.
- 2. Prove Q.

Theorem: If n is a natural number, either n is even or 3n is odd.

Proof: Suppose n is a natural number. We will prove that either n is even or 3n is odd. To do so, suppose n is not even. Since every number is either even or odd and not both, n is odd. We must show 3n is odd. By definition of odd, there is a natural number k so that n = 2k + 1. It follows that

$$3n = 3(2k + 1) = 6k + 3 = 6k + 2 + 1 = 2(3k + 1) + 1.$$

Thus, 3n is odd.

We have shown if n is not even, then 3n is odd. Therefore, if n is a natural number, either n is even, or 3n is odd.

Contrapositive

Generic Outline of Contrapositive Proof: To prove $P \rightarrow Q$

To prove $P \to Q$,

- 1. Sppose $\neg Q$.
- 2. Prove $\neg P$.

Theorem: For any number n, if n^3 is even, then n is even.

Proof: Let n be a natural number. We will use the contrapositive to prove that if n^3 is even, then n is even. The contrapositive is, "If n is not even, then n^3 is not even." Suppose n is not even. Since every number is either even or odd, n is odd. Since n is odd, there is some natural number k so that n = 2k + 1. It follows that

$$n^{3} = (2k + 1)^{3}$$

= $8k^{3} + 12k^{2} + 6k + 1$
= $2(4k^{3} + 6k^{2} + 3k) + 1.$

Hence, n^3 is odd, and not even.

We have proven that if n is not even, then n^3 is not even. This is the contrapositive of the theorem.

Contradiction

Generic Outline of Contradiction Proof:

To prove P,

- 1. Suppose $\neg P$.
- 2. Prove a contradiction.
- 3. Conclude P.

Theorem: If n is a natural number and n^3 is odd, then n is odd.

Proof: Suppose that n is a natural number and than n^3 is odd. We will use contradiction to prove that n is odd. Suppose n is not odd. Then n is even and there is a natural number k so that n = 2k. It follows that

$$n^3 = (2k)^3$$

= $8k^2$
= $2(4k^3).$

so n^3 is even. But then n^3 is both odd and even. This contradicts the theorem stating every natural number is even or odd and not both, so the assumption that n is not odd must be false. Therefore, it has to be the case that n is odd.

Induction

Generic Outline of Proof by Induction:

To prove that P(n) is true for all integers $n \ge m$,

- 1. Prove P(m).
- 2. Let $k \in \mathbb{Z}$ with $m \leq k$.
- 3. Suppose P(k).
- 4. Prove P(k+1).

Theorem: For any natural number n, $5^{2n+1} + 1$ is divisible by 6.

Proof: Let P(n) be the open statement " $5^{2n+1} + 1$ is divisible by 6". We will use induction to show that P(n) is true for all natural numbers n. First, note that $5^{2\cdot 0+1} + 1$ is divisible by 6, so P(0) is true. Next, suppose P(k) is true for some natural number k. That is, we are assumming $5^{2k+1} + 1$ is divisible by 6. This means there is a natural number l so that $5^{2k+1} + 1 = 6l$. Observe

$$5^{2(k+1)+1} + 1 = 5^{2k+3} + 1$$

= $5^{2k+1}5^2 + 1$
= $5^{2k+1} \cdot 25 + 1$
= $5^{2k+1}(4 \cdot 6 + 1) + 1$
= $5^{2k+1} \cdot 4 \cdot 6 + 5^{2k+1} + 1$
= $5^{2k+1} \cdot 4 \cdot 6 + 6l$
= $6(5^{2k+1} \cdot 4 + l)$

From the definition of divisibility, we see that 6 divides $5^{2(k+1)+1} + 1$, so P(k+1) is true. That is, if P(k) is true, so is P(k+1).

We have established that P(0) is true and that P(k) implies P(k+1) for all natural numbers k. By mathematical induction, we can conclude that P(n) is true for all natural numbers n.

Subset

Generic Outline of Subset Proof:

To prove that a set A is a subset of a set B,

- 1. Let $a \in A$.
- 2. Prove $a \in B$.

Theorem: The set $A = \{x \in R : x^2 - 4 = 0\}$ is a subset of the set $B = \{x \in R : x^4 - 16 = 0\}$.

Proof: Suppose $x \in A$ is arbitrary. This means that $x^2 - 4 = 0$, so

$$x^{4} - 16 = (x^{2} - 4)(x^{2} + 4) = 0 \cdot (x^{2} + 4) = 0.$$

Hence, $x \in B$. Thus every element of A is an element of B.

Set Equality

Generic Outline of Proof of Set Equality:

To prove a set A equals a set B,

- 1. Prove $A \subseteq B$.
- 2. Prove $B \subseteq A$.

Theorem: If A and B are sets then $A - (B \cup C) = (A - B) \cap (A - C)$.

Proof: Let A, B, and C be sets. We will prove that

$$A - (B \cup C) = (A - B) \cap (A - C).$$

First, suppose that $x \in A - (B \cup C)$. From the definition of difference, this means that $x \in A$ and $x \notin (B \cup C)$. From the definition of union and DeMorgan's Law, $x \notin B$ and $x \notin C$. Since $x \notin B$, then $x \in A$ and $x \notin B$, so $x \in (A - B)$. Since $x \notin C$, then $x \in A$ and $x \notin C$, so $x \in (A - C)$. We see that $x \in (A - B)$ and $x \in (A - C)$. This means that $x \in (A - B) \cap (A - C)$. Thus,

$$A - (B \cup C) \subseteq (A - B) \cap (A - C)$$

Now, let $x \in (A-B) \cap (A-C)$. This means that $x \in A$ and $x \notin B$ and $x \in A$ and $x \notin C$. Thus using DeMorgan's Law, $x \in A$ and $x \notin (B \cup C)$. This means $x \in A - (B \cup C)$. Thus,

$$(A - B) \cap (A - C) \subseteq A - (B \cup C).$$

Since

$$A - (B \cup C) \subseteq (A - B) \cap (A - C)$$

and

$$(A - B) \cap (A - C) \subseteq A - (B \cap C)$$

we know

$$A - (B \cup C) = (A - B) \cap (A - C)$$

Existential

Generic Outline of Proof of an Existential Statement:

To prove $(\exists x \in A)P(x)$

1. Exhibit some $x \in A$ so P(x) is true.

Theorem: Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 + 5$. There is an $x \in \mathbb{N}$ so that f(x) is even.

Proof: Let $x \in \mathbb{N}$. Note that f(3) = 14.

Universal

Generic Outline of Proof of a Universal Statement: To prove $(\forall x \in A)P(x))$

- - 1. Let $x \in A$.
 - 2. Show P(x).

Theorem: For all natural numbers n, 2n + 3 is odd.

Proof: Suppose that n is any natural number. We will prove that 2n + 3 is odd. Note that

$$2n + 3 = 2n + 2 + 1$$

= 2(n + 1) + 1.

Therefore, 2n + 3 is odd for all natural numbers n.

Cases

Generic Outline of Proof by Cases:

To prove $(P \lor Q) \to R$,

- 1. Prove $P \to R$.
- 2. Prove $Q \to R$.

Theorem: If n is a natural number, then $n^3 + 3n$ is even.

Proof: Suppose that n is a natural number. We will prove that $n^3 + 3n$ is even. There are two cases - either n is even or n is odd. Suppose first that n is even. Then there is a natural number k so that n = 2k. It follows that

$$n^{3} + 3n = (2k)^{3} + 3(2k)$$

= $8k^{3} + 6k$
= $2(4k^{3} + 3k).$

Thus $2|(n^3 + 3n)$. Therefore, if n is even, then $n^3 + 3n$ is even.

Next, suppose that n is odd. Then there is a natural number k so that n = 2k + 1. It follows that

$$n^{3} + 3n = (2k + 1)^{3} + 3(2k + 1)$$

= (2k + 1)(4lk² + 4k + 1) + 6l + 3
= 8k³ + 12k² + 6k + 4
= 2(4k³ + 6k² + 3k + 2).

Thus, $2|(n^3 + 3n)$. Therefore, if n is odd, then $n^3 + 3n$ is also even.

We have proven that if n is either even or odd, then $n^3 + 3n$ is even. Since every natural number is either even or odd, $n^3 + 3n$ is even for all natual numbers n.

Inverse Function

Generic Outline of Proof that two functions are inverses:

To prove that $f: A \to B$ and $g: B \to A$ are inverses,

- 1. Let $a \in A$.
- 2. Prove g(f(a)) = a.
- 3. Let $b \in B$.
- 4. Prove that f(g(b)) = b.

Theorem: The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{x-2}{3}$ is the inverse of the function $g : \mathbb{R} \to \mathbb{R}$ given by g(x) = 3x + 2.

Proof: Let $a \in \mathbb{R}$. We calculate f(g(a)).

$$g(f(a)) = f(3a+2)$$
$$= \frac{(3a+2)-2}{3}$$
$$= \frac{3a}{3}$$
$$= a.$$

Thus, f(g(a)) = a.

Next, we let $b \in \mathbb{R}$. We calculate g(f(b)).

$$g(f(b)) = g\left(\frac{b-2}{3}\right)$$
$$= 3\left(\frac{b-2}{3}\right) + 1$$
$$= (b-1) + 1$$
$$= b.$$

Thus, g(f(b)) = b.

Since f(g(a)) = a and g(f(b)) = b for all a and b in \mathbb{R} , f is the inverse of g.

Injectivity

Generic Outline of Proof of Injectivity:

To prove that a function $f: A \to B$ is injective,

- 1. Let $x, y \in A$.
- 2. Suppose that f(x) = f(y).
- 3. Prove that x = y.

Theorem: The function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = x - 1 is injective.

Proof: Let $x, y \in \mathbb{R}$ and assume that f(x) = f(y). We will show that x = y. Since f(x) = f(y), it follows that x - 1 = y - 1. Adding 1 to both sides of this equation yields x = y. We have shown that if f(x) = f(y) then x = y. It follows that f is injective. \Box

non-Injectivity

Generic Outline of Proof of non-Injectivity:

To show a function $T : A \to B$ is not injective, exhibit two elements x and y in A so that $x \neq y$ but f(x) = f(y).

Theorem: The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 + 2$ is not injective.

Proof: Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 + 2$. Note that f(-1) = 3 = f(1). Since $-1 \neq 1$, f is not injective.

Surjectivity

Generic Outline of Proof of Surjectivity:

To prove that a function $f: A \to B$ is surjective,

- 1. Let $b \in B$.
- 2. Exhibit an $a \in A$ with f(a) = b.

Theorem: The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 4x^7 + 3$ is surjective.

Proof: We prove that the function $f(x) = 4x^7 + 3$ from \mathbb{R} to \mathbb{R} is surjective. Let $b \in \mathbb{R}$, and let $a = \left(\frac{b-3}{4}\right)^{\frac{1}{7}}$. Note that $a \in \mathbb{R}$ and

$$f(a) = 4\left(\left(\frac{b-3}{4}\right)^{\frac{1}{7}}\right)^7 + 3$$
$$= 4\left(\frac{b-3}{4}\right) + 3$$
$$= (b-3) + 3$$
$$= b.$$

Thus, for every $b \in \mathbb{R}$, there is an $a \in \mathbb{R}$ with f(a) = b. The function f is surjective.

non-Surjectivity

Generic Outline of Proof of non-Surjectivity:

To show that a transformation $T : A \to B$ is not surjective, exhibit an element $b \in B$ so that there can be no $a \in A$ with T(a) = b.

Theorem: The function $f(x) = x^4 + 2$ from \mathbb{R} to \mathbb{R} is not surjective.

Proof: Notice that for all $x \in \mathbb{R}$, $f(x) = x^4 + 2 \ge 2$. Therefore, there can be no $x \in \mathbb{R}$ with f(x) = 0. Hence f is not surjective.

Bijectivity

Generic Outline of Proof of Bijectivity:

To prove that a function $f: A \to B$ is bijective,

- 1. Prove that f is injective.
- 2. Prove that f is surjective.

Theorem: The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3 + 3$ is bijective.

Proof: Let $f : \mathbb{R} \to \mathbb{R}$ be the function given by $f(x) = x^3 + 3$. We will prove f is bijective. By the definition of bijective, f is a bijection if and only if f is both injective and surjective. First, we will prove f is injective. Let $x, y \in \mathbb{R}$, and suppose f(x) = f(y). Then $x^3 + 3 = y^3 + 3$. Subtracting 3 and taking the cube root of both sides of the equation gives x = y. Thus, f is injective.

Next, we will prove f is surjective. Let $b \in R$. Let $a = (b-3)^{\frac{1}{3}}$. Then, $a \in R$ and

$$f(a) = a^{3} + 3$$

= ((b-3)^{1/3} + 3)
= (b-3) + 3
= b.

Thus, f is surjective.

We have proven that f is both injective and surjective. Hence, f is bijective. \Box

Equivalence Relation

Generic Outline of Equivalence Relation Proof:

To prove that a binary relation R on a set A is an equivalence relation,

- 1. Prove that R is reflexive.
- 2. Prove that R is symmetric.
- 3. Prove that R is transitive.

Theorem: R is the relation on \mathbb{R} defined by xRy if $x^3 = y^3$.

Proof: Let R be the relation on \mathbb{R} efined by xRy if $x^3 = y^3$. We will prove that R is an equivalence relation on \mathbb{R} . First, we will show R is reflexive. Let $x \in \mathbb{R}$. Since x = x, it follows that $x^3 = x^3$. Hence xRx for all $x \in \mathbb{R}$. Therefore, R is reflexive.

Next, we will show R is symmetric. Let $x, y \in \mathbb{R}$ be arbitrary and suppose xRy. This means $x^3 = y^3$ then $y^3 = x^3$ so yRx. Since xRy implies yRx, R is symmetric.

Finally, we will show R is transitive. Let $x, y, z \in \mathbb{R}$ be arbitrary and suppose xRy and yRz. Then $x^3 = y^3$ and $y^3 = z^3$, so $x^3 = z^3$. Hence, xRz. Therefore R is transitive.

We have shown R is reflexive, symmetric, and transitive. Therefore, we have proven R is an equivalence relation on \mathbb{R} .

Cardinality

Generic Outline of Cardinality Proof:

To prove that two sets A and B have the same cardinality, exhibit a bijection from A to B.

Theorem: If A is the set [0,1] and B is the set [46,52], then |A| = |B|.

Proof: Suppose A is the set [0,1] and B is the set [46,52]. We will prove that |A| = |B|. Let $f: A \to B$ be the function given by f(x) = 6x + 46. We will prove f is bijective. To prove f is bijective, we will show f is both injective and surjective.

First, we will show f is injective. Let $x, y \in \mathbb{R}$ and assume f(x) = f(y). It follows that 6x + 46 = 6y + 46. Subtracting 46 from both sides of the equation gives 6x = 6y. Dividing 6 from both sides yields x = y. Thus, f is injective.

Next, we will show f is surjective. Let $y \in B$ and let $x = \frac{y - 46}{6}$. Note that $x \in A$ and

$$f(x) = 6\left(\frac{y-46}{6}\right) + 46 = (y-46) + 46 = y.$$

Thus, f is surjective.

Therefore, since f is both injective and surjective, we can conclude f is bijective. Since f is bijective, |A| = |B|.

Cantor-Schroeder-Bernstein

Generic Outline of Cantor-Schroeder-Bernstein Proof:

To prove two sets A and B have the same cardinality,

- 1. Exhibit an injection from A to B.
- 2. Exhibit an injection from B to A.

Theorem: If A is the set (0,1) and B is the set [7,10], then |A| = |B|.

Proof: Suppose A is the set (0,1) and B is the set [7,10]. We will show |A| = |B|. Notice that the $f: (0,1) \to [7,10]$ given by f(x) = 3x + 7 is injective. Also note that $g: [7,10] \to (0,1)$ given by $g(x) = \frac{x-7}{3}$ is injective. Therefore, we have shown with the Cantor-Schroeder-Bernstein theorem that |(0,1)| = |[7,10]|.