
Direct Proof

Generic Outline of Direct Proof:

To prove an implication P → Q,

1. Suppose P .

2. Prove Q.

Theorem: For any natural numbers l,m, and n, if n ≤ m then nl ≤ ml

Proof: Suppose l,m, n are natural numbers and n ≤ m. We will show nl ≤ ml. By the
definition of order, there is a natural number k so that n+k = m. It follows that nl+kl = ml

so nl ≤ ml. Therefore, for any natural numbers l,m, n, if n ≤ m then nl ≤ ml. �
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Biconditional

Generic Outline of Biconditional Proof:

To prove a biconditional P ↔ Q,

1. Prove P → Q.

2. Prove Q→ P .

Theorem: An integer n is even if and only if n+ 2 is even.

Proof: Suppose that n ∈ Z. We will show that n is even if and only if n + 2 is even. First,
we suppose that n is even. By the definition of even, 2|n. By the definition of divisibility,
there is a k ∈ Z so that n = 2k. Adding two to both sides gives n+ 2 = 2k + 2 = 2(k + 1).
Hence, 2|(n+ 2). Therefore, n+ 2 is even.

Next, suppose n + 2 is even. By the definition of even, 2|(n + 2). By the definition of
divisibility, there is a natural number l so that n+ 2 = 2l. Subtracting two from both sides
gives n = 2l− 2 = 2(l− 1)+ 2. Hence, 2|(n+2). Thus, n is even. Therefore, n is even when
n+ 2 is even.

We have shown that an integer n is even if and only if n+ 2 is even. �
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Disjunction

Generic Outline of Disjunction Proof:

To prove a disjunction P ∨Q,

1. Suppose ¬P .

2. Prove Q.

Theorem: If n is a natural number, either n is even or 3n is odd.

Proof: Suppose n is a natural number. We will prove that either n is even or 3n is odd. To
do so, suppose n is not even. Since every number is either even or odd and not both, n is
odd. We must show 3n is odd. By definition of odd, there is a natural number k so that
n = 2k + 1. It follows that

3n = 3(2k + 1)

= 6k + 3

= 6k + 2 + 1

= 2(3k + 1) + 1.

Thus, 3n is odd.

We have shown if n is not even, then 3n is odd. Therefore, if n is a natural number,
either n is even, or 3n is odd. �
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Contrapositive

Generic Outline of Contrapositive Proof:

To prove P → Q,

1. Sppose ¬Q.

2. Prove ¬P .

Theorem: For any number n, if n3 is even, then n is even.

Proof: Let n be a natural number. We will use the contrapositive to prove that if n3 is even,
then n is even. The contrapositive is, “If n is not even, then n3 is not even.” Suppose n is
not even. Since every number is either even or odd, n is odd. Since n is odd, there is some
natural number k so that n = 2k + 1. It follows that

n3 = (2k + 1)3

= 8k3 + 12k2 + 6k + 1

= 2(4k3 + 6k2 + 3k) + 1.

Hence, n3 is odd, and not even.

We have proven that if n is not even, then n3 is not even. This is the contrapositive of
the theorem. �
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Contradiction

Generic Outline of Contradiction Proof:

To prove P ,

1. Suppose ¬P .

2. Prove a contradiction.

3. Conclude P .

Theorem: If n is a natural number and n3 is odd, then n is odd.

Proof: Suppose that n is a natural number and than n3 is odd. We will use contradiction to
prove that n is odd. Suppose n is not odd. Then n is even and there is a natural number k
so that n = 2k. It follows that

n3 = (2k)3

= 8k2

= 2(4k3).

so n3 is even. But then n3 is both odd and even. This contradicts the theorem stating every
natural number is even or odd and not both, so the assumption that n is not odd must be
false. Therefore, it has to be the case that n is odd. �
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Induction

Generic Outline of Proof by Induction:

To prove that P (n) is true for all integers n ≥ m,

1. Prove P (m).

2. Let k ∈ Z with m ≤ k.

3. Suppose P (k).

4. Prove P (k + 1).

Theorem: For any natural number n, 52n+1 + 1 is divisible by 6.

Proof: Let P (n) be the open statement “52n+1 + 1 is divisible by 6”. We will use induction
to show that P (n) is true for all natural numbers n. First, note that 52·0+1 + 1 is divisible
by 6, so P (0) is true. Next, suppose P (k) is true for some natural number k. That is, we
are assumming 52k+1 + 1 is divisible by 6. This means there is a natural number l so that
52k+1 + 1 = 6l. Observe

52(k+1)+1 + 1 = 52k+3 + 1

= 52k+152 + 1

= 52k+1 · 25 + 1

= 52k+1(4 · 6 + 1) + 1

= 52k+1 · 4 · 6 + 52k+1 + 1

= 52k+1 · 4 · 6 + 6l

= 6(52k+1 · 4 + l)

From the definition of divisibilty, we see that 6 divides 52(k+1)+1 + 1, so P (k + 1) is true.
That is, if P (k) is true, so is P (k + 1).

We have established that P (0) is true and that P (k) implies P (k + 1) for all natural
numbers k. By mathematical induction, we can conclude that P (n) is true for all natural
numbers n. �
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Subset

Generic Outline of Subset Proof:

To prove that a set A is a subset of a set B,

1. Let a ∈ A.

2. Prove a ∈ B.

Theorem: The set A = {x ∈ R : x2−4 = 0} is a subset of the set B = {x ∈ R : x4−16 = 0}.

Proof: Suppose x ∈ A is arbitrary. This means that x2 − 4 = 0, so

x4 − 16 = (x2 − 4)(x2 + 4) = 0 · (x2 + 4) = 0.

Hence, x ∈ B. Thus every element of A is an element of B. �
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Set Equality

Generic Outline of Proof of Set Equality:

To prove a set A equals a set B,

1. Prove A ⊆ B.

2. Prove B ⊆ A.

Theorem: If A and B are sets then A− (B ∪ C) = (A− B) ∩ (A− C).

Proof: Let A, B, and C be sets. We will prove that

A− (B ∪ C) = (A− B) ∩ (A− C).

First, suppose that x ∈ A − (B ∪ C). From the definition of difference, this means that
x ∈ A and x 6∈ (B ∪ C). From the definition of union and DeMorgan’s Law, x 6∈ B and
x 6∈ C. Since x 6∈ B, then x ∈ A and x 6∈ B, so x ∈ (A − B). Since x 6∈ C, then x ∈ A

and x 6∈ C, so x ∈ (A − C). We see that x ∈ (A − B) and x ∈ (A − C). This means that
x ∈ (A− B) ∩ (A− C). Thus,

A− (B ∪ C) ⊆ (A− B) ∩ (A− C).

Now, let x ∈ (A−B)∩ (A−C). This means that x ∈ A and x 6∈ B and x ∈ A and x 6∈ C.
Thus using DeMorgan’s Law, x ∈ A and x 6∈ (B ∪ C). This means x ∈ A− (B ∪ C). Thus,

(A− B) ∩ (A− C) ⊆ A− (B ∪ C).

Since
A− (B ∪ C) ⊆ (A− B) ∩ (A− C)

and
(A− B) ∩ (A− C) ⊆ A− (B ∩ C)

we know
A− (B ∪ C) = (A− B) ∩ (A− C).

�
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Existential

Generic Outline of Proof of an Existential Statement:

To prove (∃x ∈ A)P (x)

1. Exhibit some x ∈ A so P (x) is true.

Theorem: Let f : R→ R be defined by f(x) = x2+5. There is an x ∈ N so that f(x) is even.

Proof: Let x ∈ N. Note that f(3) = 14. �
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Universal

Generic Outline of Proof of a Universal Statement:

To prove (∀x ∈ A)P (x))

1. Let x ∈ A.

2. Show P (x).

Theorem: For all natural numbers n, 2n+ 3 is odd.

Proof: Suppose that n is any natural number. We will prove that 2n+ 3 is odd. Note that

2n+ 3 = 2n+ 2 + 1

= 2(n+ 1) + 1.

Therefore, 2n+ 3 is odd for all natural numbers n. �
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Cases

Generic Outline of Proof by Cases:

To prove (P ∨Q)→ R,

1. Prove P → R.

2. Prove Q→ R.

Theorem: If n is a natural number, then n3 + 3n is even.

Proof: Suppose that n is a natural number. We will prove that n3 + 3n is even. There are
two cases - either n is even or n is odd. Suppose first that n is even. Then there is a natural
number k so that n = 2k. It follows that

n3 + 3n = (2k)3 + 3(2k)

= 8k3 + 6k

= 2(4k3 + 3k).

Thus 2|(n3 + 3n). Therefore, if n is even, then n3 + 3n is even.

Next, suppose that n is odd. Then there is a natural number k so that n = 2k + 1. It
follows that

n3 + 3n = (2k + 1)3 + 3(2k + 1)

= (2k + 1)(4lk2 + 4k + 1) + 6l + 3

= 8k3 + 12k2 + 6k + 4

= 2(4k3 + 6k2 + 3k + 2).

Thus, 2|(n3 + 3n). Therefore, if n is odd, then n3 + 3n is also even.

We have proven that if n is either even or odd, then n3 +3n is even. Since every natural
number is either even or odd, n3 + 3n is even for all natual numbers n. �
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Inverse Function

Generic Outline of Proof that two functions are inverses:

To prove that f : A→ B and g : B → A are inverses,

1. Let a ∈ A.

2. Prove g(f(a)) = a.

3. Let b ∈ B.

4. Prove that f(g(b)) = b.

Theorem: The function f : R → R given by f(x) =
x− 2

3
is the inverse of the function

g : R→ R given by g(x) = 3x+ 2.

Proof: Let a ∈ R. We calculate f(g(a)).

g(f(a)) = f(3a+ 2)

=
(3a+ 2)− 2

3

=
3a

3
= a.

Thus, f(g(a)) = a.

Next, we let b ∈ R. We calculate g(f(b)).

g(f(b)) = g

(

b− 2

3

)

= 3(
b− 2

3
) + 1

= (b− 1) + 1

= b.

Thus, g(f(b)) = b.

Since f(g(a)) = a and g(f(b)) = b for all a and b in R, f is the inverse of g. �
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Injectivity

Generic Outline of Proof of Injectivity:

To prove that a function f : A→ B is injective,

1. Let x, y ∈ A.

2. Suppose that f(x) = f(y).

3. Prove that x = y.

Theorem: The function f : R→ R given by f(x) = x− 1 is injective.

Proof: Let x, y ∈ R and assume that f(x) = f(y). We will show that x = y. Since
f(x) = f(y), it follows that x − 1 = y − 1. Adding 1 to both sides of this equation yields
x = y. We have shown that if f(x) = f(y) then x = y. It follows that f is injective. �
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non-Injectivity

Generic Outline of Proof of non-Injectivity:

To show a function T : A → B is not injective, exhibit two elements x and y in A so that
x 6= y but f(x) = f(y).

Theorem: The function f : R→ R given by f(x) = x2 + 2 is not injective.

Proof: Let f : R → R be given by f(x) = x2 + 2. Note that f(−1) = 3 = f(1). Since
−1 6= 1, f is not injective. �
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Surjectivity

Generic Outline of Proof of Surjectivity:

To prove that a function f : A→ B is surjective,

1. Let b ∈ B.

2. Exhibit an a ∈ A with f(a) = b.

Theorem: The function f : R→ R given by f(x) = 4x7 + 3 is surjective.

Proof: We prove that the function f(x) = 4x7 + 3 from R to R is surjective. Let b ∈ R, and

let a =

(

b− 3

4

)
1

7

. Note that a ∈ R and

f(a) = 4

(

(

b− 3

4

)
1

7

)7

+ 3

= 4

(

b− 3

4

)

+ 3

= (b− 3) + 3

= b.

Thus, for every b ∈ R, there is an a ∈ R with f(a) = b. The function f is surjective. �
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non-Surjectivity

Generic Outline of Proof of non-Surjectivity:

To show that a transformation T : A → B is not surjective, exhibit an element b ∈ B so
that there can be no a ∈ A with T (a) = b.

Theorem: The function f(x) = x4 + 2 from R to R is not surjective.

Proof: Notice that for all x ∈ R, f(x) = x4 + 2 ≥ 2. Therefore, there can be no x ∈ R with
f(x) = 0. Hence f is not surjective. �
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Bijectivity

Generic Outline of Proof of Bijectivity:

To prove that a function f : A→ B is bijective,

1. Prove that f is injective.

2. Prove that f is surjective.

Theorem: The function f : R→ R given by f(x) = x3 + 3 is bijective.

Proof: Let f : R → R be the function given by f(x) = x3 + 3. We will prove f is bijec-
tive. By the definition of bijective, f is a bijection if and only if f is both injective and
surjective. First, we will prove f is injective. Let x, y ∈ R, and suppose f(x) = f(y). Then
x3 + 3 = y3 + 3. Subtracting 3 and taking the cube root of both sides of the equation gives
x = y. Thus, f is injective.

Next, we will prove f is surjective. Let b ∈ R. Let a = (b− 3)
1

3 . Then, a ∈ R and

f(a) = a3 + 3

= ((b− 3)
1

3 + 3)

= (b− 3) + 3

= b.

Thus, f is surjective.

We have proven that f is both injective and surjective. Hence, f is bijective. �
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Equivalence Relation

Generic Outline of Equivalence Relation Proof:

To prove that a binary relationR on a set A is an equivalence relation,

1. Prove that R is reflexive.

2. Prove that R is symmetric.

3. Prove that R is transitive.

Theorem: R is the relation on R defined by xRy if x3 = y3.

Proof: Let R be the relation on R efined by xRy if x3 = y3. We will prove that R is an
equivalence relation on R. First, we will show R is reflexive. Let x ∈ R. Since x = x, it
follows that x3 = x3. Hence xRx for all x ∈ R. Therefore, R is reflexive.

Next, we will show R is symmetric. Let x, y ∈ R be arbitrary and suppose xRy. This
means x3 = y3 then y3 = x3 so yRx. Since xRy implies yRx, R is symmetric.

Finally, we will show R is transitive. Let x, y, z ∈ R be arbitrary and suppose xRy and
yRz. Then x3 = y3 and y3 = z3, so x3 = z3. Hence, xRz. Therefore R is transitive.

We have shown R is reflexive, symmetric, and transitive. Therefore, we have proven R

is an equivalence relation on R. �
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Cardinality

Generic Outline of Cardinality Proof:

To prove that two sets A and B have the same cardinality, exhibit a bijection from A to B.

Theorem: If A is the set [0,1] and B is the set [46,52], then |A| = |B|.

Proof: Suppose A is the set [0,1] and B is the set [46,52]. We will prove that |A| = |B|. Let
f : A→ B be the function given by f(x) = 6x + 46. We will prove f is bijective. To prove
f is bijective, we will show f is both injective and surjective.

First, we will show f is injective. Let x, y ∈ R and assume f(x) = f(y). It follows that
6x+ 46 = 6y + 46. Subtracting 46 from both sides of the equation gives 6x = 6y. Dividing
6 from both sides yields x = y. Thus, f is injective.

Next, we will show f is surjective. Let y ∈ B and let x =
y − 46

6
. Note that x ∈ A and

f(x) = 6

(

y − 46

6

)

+ 46

= (y − 46) + 46

= y.

Thus, f is surjective.

Therefore, since f is both injective and surjective, we can conclude f is bijective. Since
f is bijective, |A| = |B|. �
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Cantor-Schroeder-Bernstein

Generic Outline of Cantor-Schroeder-Bernstein Proof:

To prove two sets A and B have the same cardinality,

1. Exhibit an injection from A to B.

2. Exhibit an injection from B to A.

Theorem: If A is the set (0,1) and B is the set [7,10], then |A| = |B|.

Proof: Suppose A is the set (0,1) and B is the set [7,10]. We will show |A| = |B|. Notice that
the f : (0, 1)→ [7, 10] given by f(x) = 3x+ 7 is injective. Also note that g : [7, 10]→ (0, 1)

given by g(x) =
x− 7

3
is injective. Therefore, we have shown with the Cantor-Schroeder-

Bernstein theorem that |(0, 1)| = |[7, 10]|. �
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