1. Disjunction

Generic Outline of Disjunction:

To prove a disjunction $P \lor Q$:

- 1. Suppose $\neg P$.
- 2. Prove Q.

Theorem: For any natural number n, either n is even or n^2 is odd.

Proof: Let n be any natural number. Suppose n is not even. It follows that n is odd. Then there is a natural number k so that n = 2k + 1. Then

$$n^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 2(2k^{2} + 2k) + 1$$

so n is odd. We have proven that if n is any natural number, then either n is even or n^2 is odd.

2. Cases

Generic Outline of Cases:

To prove cases $(P \lor Q) \to R$:

- 1. Prove $P \to R$
- 2. Prove $Q \to R$

Theorem: If a and b are integers, then |ab| = |a||b|.

Proof: Let a and b be integers. We will prove that |ab| = |a||b|. We will use cases to prove this theorem. The four cases are as follows: $a, b \ge 0$, a < 0 and $b \ge 0$, $a \ge 0$ and b < 0, or a, b < 0.

First, suppose $a, b \ge 0$. This means that

$$|ab| = ab = |a||b|.$$

Thus, |ab| = |a||b|.

Next, suppose a < 0 and $b \ge 0$. This means that |a| = -a and |b| = b. It follows that

$$|(-a)b| = |ab| = (-a)b = |a||b|.$$

Thus, |ab| = |a||b|.

Now, suppose $a \ge 0$ and b < 0. This means that |a| = a and |b| = -b. Then

$$|a(-b)| = |ab| = a(-b) = |a||b|.$$

Thus, |ab| = |a||b|.

Finally, suppose a, b < 0. Then |a| = -a and |b| = -b. That is

$$|(-a)(-b)| = |ab| = (-a)(-b) = |a||b|.$$

Thus, |ab| = |a||b|.

Since |ab| = |a||b| for all four cases, we have prove that if a and b are integers, then |ab| = |a||b|.

Generic Outline for If-and-only-if: To prove a biconditional $P \leftrightarrow Q$:

- 1. Prove $P \to Q$
- 2. Prove $Q \to P$

Theorem: Suppose that d, m, n, q, r are integers so that m = nq + r. Then d|m and d|n if and only if d|n and d|r.

Proof: Let $d, m, n, q, r \in \mathbb{Z}$ and m = nq + r. We will prove d|m and d|n if and only if d|n and d|r.

First, suppose d|m and d|n. Then there are integers a and b so that m = da and n = db. Substituting da in for m and db in for n yields, dbq + r = da. Subtracting dbq gives r = da - dbq. Then r = d(a - bq). Thus, d|r. From our assumption, we also get d|n.

Next, suppose d|n and d|r. Then there are integers a and b so that n = db and r = da. Substituting n and r into the equation for m yields m = dbq + da. Factoring out a d gives m = d(bq + a). Thus d|m. From our assumption, we also have d|n.

We have proven that d|m and d|n if and only if d|n and d|r.

4. Contradiction

Generic Outline for Contradiction: To prove P,

- 1. Suppose $\neg P$
- 2. Prove a contradiction
- 3. Conclude P

Theorem: It is not the case that 2|1.

Proof: We will prove that it is not the case that 2|1. We will prove this by way of contradiction.

Suppose 2|1. By the definition of divisibility, there is an integer k so that 2k = 1. Then k + k = 1. This means $k \leq 1$. There are two cases-either k = 1 or k = 0. If k = 0 then $2 \cdot 0 = 0$. Hence, 1 = 0 and this is false by Peano Axiom three. If k = 1 then $2 \cdot 1 = 2$. Thus, 1 = 2 and this is false since the successor function is injective and $1 \neq 0$ Then $s(1) \neq s(0)$.

We have proven by way of contradiction that it is not the case that 2|1.

5. Contradiction

Generic Outline for Contradiction: To prove P,

- 1. Suppose $\neg P$
- 2. Prove a Contradiction
- 3. Conclude ${\cal P}$

Theorem: It is not the case that 0 = 1.

Proof: We will prove that it is not the case 0 = 1. We will prove this by way of contradiction. Suppose 0 = 1. Then 0 = s(0) and this is false by the third Peano Axiom. Therefore, it is not the case that 0 = 1. 6. Subset

Generic Outline for Subset: To prove that a set A is a subset of a set B,

- 1. Let $a \in A$
- 2. Prove $b \in B$

Theorem: Suppose that R, S, and T are binary relations on a set A. Then $R \circ (S \circ T) \subseteq (R \circ S) \circ T$.

Proof: Let R, S, and T be binary relations on a set A. We will show that $R \circ (S \circ T) \subseteq (R \circ S) \circ T$.

Suppose $(a, d) \in R \circ (S \circ T)$. This means there is some $b \in A$ with $(a, b) \in R$ and $(b, d) \in S \circ T$. Since $(b, d) \in S \circ T$, there is some $c \in A$ with $(b, c) \in S$ and $(c, d) \in T$. Since $(a, b) \in R$ and $(b, c) \in S$, it follows that $(a, c) \in R \circ S$. Since we also know $(c, d) \in T$, this means $(a, d) \in (R \circ S) \circ T$. Thus, $R \circ (S \circ T) \subseteq (R \circ S) \circ T$.

Generic Outline for Set Equality: To prove a set A equals a set B,

- 1. Prove $A \subseteq B$
- 2. Prove $B \subseteq A$

Theorem: Suppose that R is an equivalence relation on a set A and that $a, b \in A$. If aRb, then $[a]_R = [b]_R$.

Proof: Let R be an equivalence relation on a set A and that $(a, b) \in A$. We will prove that if aRb, then $[a]_R = [b]_R$. Suppose aRb. First we will prove $[a]_R \subseteq [b]_R$. Let $x \in [a]_R$. By the definition of equivalence class, aRx. Since R is symmetric, bRa. By transitivity, bRx. Then $x \in [b]_R$. Thus, $[a]_R \subseteq [b]_R$.

Next, we will prove $[b]_R \subseteq [a]_R$. Let $x \in [b]_R$. By the definition of equivalence class, bRx. By transitivity aRx. Then $x \in [a]_R$. Thus, $[b]_R \subseteq [a]_R$.

We have proven that if aRb then $[a]_R = [b]_R$.

8. Equivalence Relation, Set Equality, Biconditional

Generic Outline for Equivalence Relation: To prove that a binary relation R on a set A is an equivalence relation,

- 1. Prove that R is reflexive
- 2. Prove that R is symmetric
- 3. Prove that R is transitive

Generic Outline for Set Equality: To prove that a set A equals a set B,

- 1. Prove $A \subseteq B$
- 2. Prove $B \subseteq A$

Generic Outline for Biconditional: To prove a biconditional $P \leftrightarrow Q$,

- 1. Prove $P \to Q$
- 2. Prove $Q \to P$

Theorem: Suppose that R is a reflexive relation on a set A. R is an equivalence relation if and only if $R = R \circ R^{\cup}$.

Proof: Let R be a reflexive relation on a set A. We will prove R is an equivalence relation if and only if $R = R \circ R^{\cup}$.

First, we will prove if R is an equivalence relation then $R = R \circ R^{\cup}$. Suppose R is an equivalence relation. We will prove $R \subseteq R \circ R^{\cup}$. Let $(a, b) \in R$. Then aRb. Since R is reflexive, aRb and bRb. Taking the converse of bRb, yields aRb and $bR^{\cup}b$. Then $aR \circ R^{\cup}b$. Thus, $R \subseteq R \circ R^{\cup}$. Next, we will prove $R \circ R^{\cup} \subseteq R$. Let $(a, c) \in R \circ R^{\cup}$. Then there is a $b \in A$, so that aRb and $bR^{\cup}c$. By the definition of converse, aRb and cRb. Since R is symmetric, aRb and bRc. By transitivity, aRc. Thus, $R \circ R^{\cup} \subseteq R$. Therefore, when R is an equivalence relation, $R \circ R^{\cup} = R$.

Next, we will prove that if $R = R \circ R^{\cup}$ then R is an equivalence relation. Suppose $R = R \circ R^{\cup}$. We will prove that R is an equivalence relation. From our condition above, R is reflexive. We will prove next that R is symmetric. Suppose aRb. Then since R is reflexive, bRb and aRb. By the definition of converse, bRb and $bR^{\cup}a$. It follows that $bR \circ R^{\cup}a$. Thus, bRa and R is symmetric. Next, we will prove that R is transitive. Suppose aRb and bRc. Since we have proven R is symmetric, it follows that aRb and cRb. Applying the converse yields aRb and $bR^{\cup}c$. By the definition of composition, $aR \circ R^{\cup}c$. Thus, aRc and R is transitive. Therefore, when $R = R \circ R^{\cup}$, R is an equivalence relation.

We have proven that R is an equivalence relation if and only if $R = R \circ R^{\cup}$.

9. Equivalence Relation:

Generic Outline for Equivalence Relation: To prove that a binary relation R on a set A is an equivalence relation,

- 1. Prove that R is reflexive
- 2. Prove that R is symmetric
- 3. Prove that R is transitive

Theorem: Suppose that $f : A \to B$ is any function. Let R be the relation defined on A so if $a, b \in A$, then aRb if and only if f(a) = f(b). R is an equivalence relation.

Proof: Let R be the relation defined on A so that if $a, b \in A$, then aRb if and only if f(a) = f(b). We will prove that R is an equivalence relation.

First, we will prove that R is reflexive. Let $a \in A$. Since a = a, f(a) = f(a). Thus, aRa and R is reflexive.

Next, we will prove that R is symmetric. Let $a, b \in A$. Suppose aRb. This means that f(a) = f(b). Since equality is symmetric, f(b) = f(a). Hence, bRa and R is symmetric.

Finally, we will prove that R is transitive. Let $a, b, c \in A$. Suppose aRb and bRc. That is, f(a) = f(b) and f(b) = f(c). Substituting f(a) in for f(b) yields, f(a) = f(c). Therefore, aRc and R is transitive.

We have proven that R is reflexive, symmetric, and transitive. Thus, R is an equivalence relation.

10. Induction:

Generic Outline for Induction: To prove that P(n) is true for all natural numbers $n \ge m$,

- 1. Prove P(m)
- 2. Let $k \in \mathbb{N}$ with $m \leq k$
- 3. Suppose P(k)
- 4. Prove P(k+1)

Theorem: For all natural numbers $n \ge 4, n! \ge 2^n$.

*Proof:*Let P(n) be the open statement " $n! \ge 2^n$." We will prove P(n) is true for all natural numbers $n \ge 4$. First, note that $4! = 24 \ge 16 = 2^4$. Thus, P(4) is true.

Next, suppose that k is natural number and that P(k) is true. That is, we are assuming that $k! \ge 2^k$. Observe that, (k+1)! = (k+1)k!. Since we assumed $k! \ge 2^k$, it follows that $(k+1)k! \ge (k+1)2^k$. Note that $k+1 \ge 2$. Then $(k+1)k! \ge 2 \cdot 2^k$. Thus, $(k+1)! \ge 2^{k+1}$.

We have proven that P(4) is true and that for all k P(k) implies P(k+1). Thus, by induction P(n) is true for all natural numbers $n \ge 4$.

11. Induction:

Generic Outline for Induction: To prove that P(n) is true for all natural numbers $n \ge m$,

- 1. Prove P(m)
- 2. Let $k \in \mathbb{N}$ with $m \leq k$
- 3. Suppose P(k)
- 4. Prove P(k+1)

Theorem: Let s be the sequence defined by $s_0 = 0$ and $s_{n+1} = \frac{s_n + 2}{3}$ for all $n \ge 0$. Then s is monotonic.

Proof: Let P(n) be the open statement " $s_n \leq s_{n+1}$." We will use induction to prove that P(n) is true for all natural numbers $n \ge 0$.

First, $s_0 = 0$ and $s_1 = \frac{2}{3}$, so $s_0 \le s_1$ and P(0) is true. Now suppose that $k \in \mathbb{N}$ and P(k) is true. That is, $s_k \le s_{k+1}$. Adding 2 to this inequality gives $s_k + 2 \le s_{k+1} + 2$. Dividing by 3 now gives $\frac{s_k + 2}{3} \le \frac{s_{k+1} + 2}{3}$. Our recursive definition of s tells us that $s_{k+1} = \frac{s_k+2}{3}$ and $s_{k+2} = \frac{s_{k+1}+2}{3}$. Hence, we have $s_{k+1} \leq s_{k+2}$. Thus, P(k+1) is true.

We have proven that P(0) is true and that P(k) implies P(k+1) for all natural numbers k. By induction, P(n) is true for all natural numbers $n \ge 0$. It follows that s is increasing. \Box

12. Induction:

Generic Outline for Induction: To prove that P(n) is true for all natural numbers $n \ge m$,

- 1. Prove P(m)
- 2. Let $k \in \mathbb{N}$ with $m \leq k$
- 3. Suppose P(k)
- 4. Prove P(k+1)

Theorem: Let s be the sequence defined by $s_1 = 0$ and $s_{n+1} = 1 - s_n$ for all $n \ge 1$. For all $n, s_n = \frac{1}{2}(1 + (-1)^n)$.

Proof: Let s be the sequence defined by $s_1 = 0$ and $s_{n+1} = 1 - s_n$ for all $n \ge 1$. Let P(n) be the open statement " $s_n = \frac{1}{2}(1 + (-1)^n)$." We will prove that P(n) is true for all natural numbers $n \ge 1$. First, note that $s_1 = 0$ and $\frac{1}{2}(1 + (-1)^n) = 0$. Thus, P(1) is true.

Next, suppose that k is a natural number and that P(k) is true. That is, we are assuming that $s_k = \frac{1}{2}(1 + (-1)^k)$. Notice that

$$s_{k+1} = 1 - s_k$$

= $1 - \frac{1}{2}(1 + (-1)^k)$
= $1 - \frac{1}{2} - \frac{1}{2}(-1)^k$
= $\frac{1}{2} - \frac{1}{2}(-1)^k$
= $\frac{1}{2}(1 - 1(-1)^k)$
= $\frac{1}{2}(1 + (-1)^{k+1}).$

Hence, P(k+1) is true.

We have established that P(1) is true and that P(k) implies P(k+1). By induction, P(n) is true for all natural numbers $n \ge 1$.

13. Cardinality:

Generic Outline for Cardinality: To prove that two sets A and B have the same cardinality, exhibit a bijection from A to B.

Theorem: $|\mathbb{Z}| = |\mathbb{N}|$. *Proof:* We will prove that $|\mathbb{Z}| = |\mathbb{N}|$. We will define $f : \mathbb{Z} \to \mathbb{N}$ by

$$f(n) = \begin{cases} 2n-1 & n > 0\\ |2n| & n \le 0 \end{cases}$$

We will define $g: \mathbb{N} \to \mathbb{Z}$ by

$$g(n) = \begin{cases} \frac{n+1}{2} & n \text{ is odd} \\ -\frac{1}{2}n & n \text{ is even} \end{cases}$$

We will prove that f and g are inverses. Let $z \in \mathbb{Z}$. We calculate g(f(z)).

$$g(f(z)) = g(2z - 1) = \frac{2z - 1 + 1}{2} = \frac{2z}{2} = z.$$

Next let $n \in \mathbb{N}$. We calculate f(g(n)).

$$f(g(n)) = f(-\frac{1}{2}n) = |2(-\frac{1}{2}n)| = |-n| = n.$$

Since f and g are inverses, $|\mathbb{Z}| = |\mathbb{N}|$.

14. Cardinality:

Generic Outline for Cardinality: To prove that two sets A and B have the same cardinality, exhibit a bijection from A to B.

Theorem: Suppose that A and B are sets. If |A| = |B|, then $|\mathcal{P}(A)| = |\mathcal{P}(B)|$. *Proof:* Suppose A and B are sets and |A| = |B|. We will prove $|\mathcal{P}(A)| = |\mathcal{P}(B)|$. Then there are subsets C and D of A and B, respectively. Define $f : C \to D$ so that

$$F(C) = D = \{f(x) : x \in C\}$$

for $C \subseteq A$. Next, we will define

$$G(D) = \{f^{-1}(x) : x \in D\}$$

for $D \subseteq B$. Since F and G are inverses, f is bijective. There powersets have the same cardinality since A and B have the same cardinality. Thus, $|\mathcal{P}(A)| = |\mathcal{P}(B)|$.

Generic Outline for Set Equality: To prove that a set A equals a set B,

- 1. Prove $A \subseteq B$
- 2. Prove $B \subseteq A$

Theorem: Suppose R is an equivalence relation on a set A. Show that $R \circ R = R$.

Proof: Let R be an equivalence relation on a set A. We will prove $R \circ R = R$.

First, we show $R \circ R \subseteq R$. Let $(a, c) \in R \circ R$. This means $aR \circ Rc$. Then there is a $b \in A$ such that aRb and bRc. By transitivity, aRc. Thus, $R \circ R \subseteq R$.

Next, we show $R \subseteq R \circ R$. Let $(a, c) \in R$. This means aRc. By reflexive, aRc and cRc. It follows that $aR \circ Rc$. Thus, $R \subseteq R \circ R$.

Since $R \circ R \subseteq R$ and $R \subseteq R \circ R$, $R \circ R = R$.