1. Disjunction

Generic Outline of Disjunction:
To prove a disjunction PV Q:

1. Suppose —P.
2. Prove Q).

Theorem: For any natural number n, either n is even or n? is odd.

Proof: Let n be any natural number. Suppose n is not even. It follows that n is odd. Then
there is a natural number k so that n = 2k + 1. Then

n? = (2k +1)* = 4k + 4k + 1 = 2(2K* + 2k) + 1

so n is odd. We have proven that if n is any natural number, then either n is even or n? is

odd. O



2. Cases

Generic Outline of Cases:
To prove cases (P V Q) — R:

1. Prove P — R
2. Prove Q — R

Theorem: If a and b are integers, then |ab| = |a|b].

Proof: Let a and b be integers. We will prove that |ab| = |a||b]. We will use cases to prove
this theorem. The four cases are as follows: a,b >0, a < 0and b>0,a >0 and b <0, or
a,b<0.

First, suppose a,b > 0. This means that

|ab| = ab = |al|b|.

Thus, |ab| = |a|[b].
Next, suppose a < 0 and b > 0. This means that |a| = —a and |b] = b. It follows that

|(—a)b| = [ab] = (=a)b = |al[b].

Thus, |ab| = |a||b|.
Now, suppose a > 0 and b < 0. This means that |a| = a and |b] = —b. Then

|a(=b)| = [ab] = a(=b) = |al[b].

Thus, |ab| = |al[b].
Finally, suppose a,b < 0. Then |a| = —a and |b| = —b. That is

|[(=a)(=0)| = |ab] = (=a)(=b) = |al[b].

Thus, |ab| = |a||b].
Since |ab| = |a||b| for all four cases, we have prove that if a and b are integers, then
|ab| = |al|0]. 0



3. Biconditional

Generic Outline for If-and-only-if: To prove a biconditional P < Q:
1. Prove P — @)
2. Prove Q — P

Theorem: Suppose that d,m,n,q,r are integers so that m = ng + r. Then d|m and d|n if
and only if d|n and d|r.

Proof: Let d,m,n,q,r € Z and m = nqg + r. We will prove d|m and d|n if and only if d|n
and d|r.

First, suppose d|m and d|n. Then there are integers a and b so that m = da and
n = db. Substituting da in for m and db in for n yields, dbq 4+ r = da. Subtracting dbq gives
r = da — dbq. Then r = d(a — bq). Thus, d|r. From our assumption, we also get d|n.

Next, suppose d|n and d|r. Then there are integers a and b so that n = db and r = da.
Substituting n and r into the equation for m yields m = dbg + da. Factoring out a d gives
m = d(bqg + a). Thus d|m. From our assumption, we also have d|n.

We have proven that d|m and d|n if and only if d|n and d|r. O



4. Contradiction

Generic Outline for Contradiction: To prove P,
1. Suppose =P
2. Prove a contradiction

3. Conclude P

Theorem: It is not the case that 2|1.

Proof: We will prove that it is not the case that 2|1. We will prove this by way of contra-
diction.

Suppose 2|1. By the definition of divisibility, there is an integer k so that 2k = 1. Then
k+ k = 1. This means k < 1. There are two cases—either Kk = 1 or k = 0. If £ = 0 then
2-0 = 0. Hence, 1 = 0 and this is false by Peano Axiom three. If £ = 1 then 2-1 = 2. Thus,
1 = 2 and this is false since the successor function is injective and 1 # 0 Then s(1) # s(0).

We have proven by way of contradiction that it is not the case that 2|1. 0



5. Contradiction

Generic Outline for Contradiction: To prove P,
1. Suppose =P
2. Prove a Contradiction
3. Conclude P

Theorem: It is not the case that 0 = 1.

Proof: We will prove that it is not the case 0 = 1. We will prove this by way of contradiction.
Suppose 0 = 1. Then 0 = s(0) and this is false by the third Peano Axiom.
Therefore, it is not the case that 0 = 1. 0



6. Subset

Generic Outline for Subset: To prove that a set A is a subset of a set B,
1. Leta€e A
2. Prove b e B

Theorem: Suppose that R, S, and T are binary relations on a set A. Then Ro (SoT) C
(RoS)oT.

Proof: Let R, S, and T be binary relations on a set A. We will show that Ro (SoT) C
(RoS)oT.

Suppose (a,d) € Ro (S oT). This means there is some b € A with (a,b) € R and
(b,d) € SoT. Since (b,d) € SoT, there is some ¢ € A with (b,¢) € S and (¢,d) € T. Since
(a,b) € R and (b,c) € 5, it follows that (a,c) € Ro S. Since we also know (¢,d) € T, this
means (a,d) € (RoS)oT. Thus, Ro(SoT)C (RoS)oT. O



7. Set Equality

Generic Outline for Set Equality: To prove a set A equals a set B,
1. Prove AC B
2. Prove BC A

Theorem: Suppose that R is an equivalence relation on a set A and that a,b € A. If aRb,
then [a], = [b] 5.

Proof: Let R be an equivalence relation on a set A and that (a,b) € A. We will prove that
if aRb, then [a], = [b] 5. Suppose aRb. First we will prove [a|, C [b] 5. Let z € [a],. By the
definition of equivalence class, aRx. Since R is symmetric, bRa. By transitivity, bRx. Then
z € [b],. Thus, [a]y C [b]4.

Next, we will prove [b], C [a] ;. Let 2 € [b],. By the definition of equivalence class, bRz.
By transitivity aRxz. Then z € [a],. Thus, [b], C [a] 5.
We have proven that if aRb then [a], = [b] 5. O



8. Equivalence Relation, Set Equality, Biconditional

Generic Outline for Equivalence Relation: To prove that a binary relation R on a set
A is an equivalence relation,

1. Prove that R is reflexive
2. Prove that R is symmetric
3. Prove that R is transitive
Generic Outline for Set Equality: To prove that a set A equals a set B,
1. Prove AC B
2. Prove BC A
Generic Outline for Biconditional: To prove a biconditional P < (),
1. Prove P — Q
2. Prove Q — P

Theorem: Suppose that R is a reflexive relation on a set A. R is an equivalence relation if
and only if R = Ro R".

Proof: Let R be a reflexive relation on a set A. We will prove R is an equivalence relation
if and only if R = Ro R".

First, we will prove if R is an equivalence relation then R = R o R”. Suppose R is an
equivalence relation. We will prove R C Ro R”. Let (a,b) € R. Then aRb. Since R is
reflexive, aRb and bRb. Taking the converse of bRb, yields aRb and bR"b. Then aR o R"b.
Thus, R € Ro R”. Next, we will prove Ro R” C R. Let (a,c¢) € Ro R”. Then there is
a b€ A, sothat aRb and bR"c. By the definition of converse, aRb and cRb. Since R is
symmetric, aRb and bRe. By transitivity, aRec. Thus, Ro R” C R. Therefore, when R is an
equivalence relation, Ro R” = R.

Next, we will prove that if R = R o R” then R is an equivalence relation. Suppose
R = RoR"”. We will prove that R is an equivalence relation. From our condition above, R is
reflexive. We will prove next that R is symmetric. Suppose aRb. Then since R is reflexive,
bRb and aRb. By the definition of converse, bRb and bR"a. It follows that bR o R”a. Thus,
bRa and R is symmetric. Next, we will prove that R is transitive. Suppose aRb and bRc.
Since we have proven R is symmetric, it follows that aRb and c¢Rb. Applying the converse
yields aRb and bR”c. By the definition of composition, aR o R”c. Thus, aRc and R is
transitive. Therefore, when R = Ro R”, R is an equivalence relation.

We have proven that R is an equivalence relation if and only if R = Ro R". 0



9. Equivalence Relation:

Generic Outline for Equivalence Relation: To prove that a binary relation R on a
set A is an equivalence relation,

1. Prove that R is reflexive
2. Prove that R is symmetric
3. Prove that R is transitive

Theorem: Suppose that f: A — B is any function. Let R be the relation defined on A so
if a,b € A, then aRb if and only if f(a) = f(b). R is an equivalence relation.

Proof: Let R be the relation defined on A so that if a,b € A, then aRb if and only if
f(a) = f(b). We will prove that R is an equivalence relation.

First, we will prove that R is reflexive. Let a € A. Since a = a, f(a) = f(a). Thus, aRa
and R is reflexive.

Next, we will prove that R is symmetric. Let a,b € A. Suppose aRb. This means that
f(a) = f(b). Since equality is symmetric, f(b) = f(a). Hence, bRa and R is symmetric.

Finally, we will prove that R is transitive. Let a,b,c € A. Suppose aRb and bRc. That
is, f(a) = f(b) and f(b) = f(c). Substituting f(a) in for f(b) yields, f(a) = f(c). Therefore,
aRc and R is transitive.

We have proven that R is reflexive, symmetric, and transitive. Thus, R is an equivalence
relation. ([l



10. Induction:

Generic Outline for Induction: To prove that P(n) is true for all natural numbers
n>m,

1. Prove P(m)

2. Let k e Nwithm <k
3. Suppose P(k)

4. Prove P(k +1)

Theorem: For all natural numbers n > 4, n! > 2",

Proof:Let P(n) be the open statement “n! > 2".” We will prove P(n) is true for all natural
numbers n > 4. First, note that 4! = 24 > 16 = 2*. Thus, P(4) is true.

Next, suppose that k is natural number and that P(k) is true. That is, we are assuming
that k! > 2. Observe that, (k4 1)! = (k + 1)k!. Since we assumed k! > 2 it follows that
(k4 1)k! > (k +1)2". Note that k + 1 > 2. Then (k + 1)k! > 2-2%. Thus, (k +1)! > 28+,

We have proven that P(4) is true and that for all & P(k) implies P(k + 1). Thus, by
induction P(n) is true for all natural numbers n > 4. O
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11. Induction:

Generic Outline for Induction: To prove that P(n) is true for all natural numbers n > m,
1. Prove P(m)
2. Let ke Nwithm <k
3. Suppose P(k)

4. Prove P(k+1)

Sn +2 for all n > 0. Then

Theorem: Let s be the sequence defined by sy = 0 and s,11 =

s 1S monotonic.

Proof: Let P(n) be the open statement “s, < s,y;.” We will use induction to prove that
P(n) is true for all natural numbers n > 0.

2
First, so = 0 and s; = =, s0 59 < s and P(0) is true.
Now suppose that £ € N and P(k) is true. That is, sy < sx11. Adding 2 to this inequality

: o . Skt 2  Spyt2 . "
gives sp +2 < sp11 + 2. Dividing by 3 now gives i 5 < k+13 . Our recursive definition
Sk +2 S 2
of s tells us that sp,q = k and S o = % Hence, we have s;11 < si1o. Thus,

P(k+1) is true.
We have proven that P(0) is true and that P(k) implies P(k+ 1) for all natural numbers
k. By induction, P(n) is true for all natural numbers n > 0. It follows that s is increasing. [J
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12. Induction:

Generic Outline for Induction: To prove that P(n) is true for all natural numbers n > m,
1. Prove P(m)
2. Let ke Nwithm <k
3. Suppose P(k)
4. Prove P(k+1)

Theorem: Let s be the sequence defined by s; =0 and s,,.1 =1 — s, for all n > 1. For all

n, S, = %(1 +(=1)").

Proof: Let s be the sequence defined by s; = 0 and s,.1 =1 — s, for all n > 1. Let P(n)
1
be the open statement “s,, = 5(1 + (—1)").” We will prove that P(n) is true for all natural
1
numbers n > 1. First, note that s; = 0 and 5(1 + (—1)") = 0. Thus, P(1) is true.

Next, suppose that & is a natural number and that P(k) is true. That is, we are assuming

1
that sj, = 5(1 + (=1)%). Notice that

Sky1 =1 — 8
1

:1—5(1+(—1)k)
=5 -1
=S(1-1(-1)"

Hence, P(k+ 1) is true.
We have established that P(1) is true and that P(k) implies P(k + 1). By induction,
P(n) is true for all natural numbers n > 1. O
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13. Cardinality:

Generic Outline for Cardinality: To prove that two sets A and B have the same cardi-
nality, exhibit a bijection from A to B.

Theorem: |Z| = |N].
Proof: We will prove that |Z| = |N|. We will define f : Z — N by

2n—1 n>0
f(n)—{ |2n| n<0
We will define g : N — Z by
n+1

gln)=1< ¢

——n NS even

n 1s odd

We will prove that f and g are inverses. Let z € Z. We calculate g(f(2)).

o) =gz -1 = T = F

Next let n € N. We calculate f(g(n)).

1 1
Flam) = F(~ ) = 2~ ) = | n] = n.
Since f and g are inverses, |Z| = |N|.

O
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14. Cardinality:

Generic Outline for Cardinality: To prove that two sets A and B have the same cardi-
nality, exhibit a bijection from A to B.

Theorem: Suppose that A and B are sets. If |A| = |B|, then |P(A)| = |P(B)].
Proof: Suppose A and B are sets and |A| = |B|. We will prove |P(A)| = |P(B)|. Then there
are subsets C' and D of A and B, respectively. Define f : C'— D so that

F(C)=D={f(x):x € C}
for C' C A. Next, we will define
G(D) = { () : v € D}

for D C B. Since F' and G are inverses, f is bijective. There powersets have the same
cardinality since A and B have the same cardinality. Thus, |[P(A)| = |P(B)|. O
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15. Your Choice: Set Equality

Generic Outline for Set Equality: To prove that a set A equals a set B,
1. Prove AC B
2. Prove BC A

Theorem: Suppose R is an equivalence relation on a set A. Show that Ro R = R.

Proof: Let R be an equivalence relation on a set A. We will prove Ro R = R.

First, we show RoR C R. Let (a,c) € Ro R. This means aRo Rc. Then thereisa b e A
such that aRb and bRc. By transitivity, aRc. Thus, Ro R C R.

Next, we show R C Ro R. Let (a,c) € R. This means aRe. By reflexive, aRc and cRe.
It follows that aR o Rc. Thus, R C Ro R.

Since RoRC Rand RC RoR, RoR=R. ]
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