
1. Disjunction

Generic Outline of Disjunction:

To prove a disjunction P ∨Q:

1. Suppose ¬P .

2. Prove Q.

Theorem: For any natural number n, either n is even or n2 is odd.

Proof: Let n be any natural number. Suppose n is not even. It follows that n is odd. Then
there is a natural number k so that n = 2k + 1. Then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

so n is odd. We have proven that if n is any natural number, then either n is even or n2 is
odd. �
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2. Cases

Generic Outline of Cases:

To prove cases (P ∨Q)→ R:

1. Prove P → R

2. Prove Q→ R

Theorem: If a and b are integers, then |ab| = |a||b|.

Proof: Let a and b be integers. We will prove that |ab| = |a||b|. We will use cases to prove
this theorem. The four cases are as follows: a, b ≥ 0, a < 0 and b ≥ 0, a ≥ 0 and b < 0, or
a, b < 0.

First, suppose a, b ≥ 0. This means that

|ab| = ab = |a||b|.

Thus, |ab| = |a||b|.
Next, suppose a < 0 and b ≥ 0. This means that |a| = −a and |b| = b. It follows that

|(−a)b| = |ab| = (−a)b = |a||b|.

Thus, |ab| = |a||b|.
Now, suppose a ≥ 0 and b < 0. This means that |a| = a and |b| = −b. Then

|a(−b)| = |ab| = a(−b) = |a||b|.

Thus, |ab| = |a||b|.
Finally, suppose a, b < 0. Then |a| = −a and |b| = −b. That is

|(−a)(−b)| = |ab| = (−a)(−b) = |a||b|.

Thus, |ab| = |a||b|.
Since |ab| = |a||b| for all four cases, we have prove that if a and b are integers, then

|ab| = |a||b|. �
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3. Biconditional

Generic Outline for If-and-only-if: To prove a biconditional P ↔ Q:

1. Prove P → Q

2. Prove Q→ P

Theorem: Suppose that d,m, n, q, r are integers so that m = nq + r. Then d|m and d|n if
and only if d|n and d|r.

Proof: Let d,m, n, q, r ∈ Z and m = nq + r. We will prove d|m and d|n if and only if d|n
and d|r.

First, suppose d|m and d|n. Then there are integers a and b so that m = da and
n = db. Substituting da in for m and db in for n yields, dbq + r = da. Subtracting dbq gives
r = da− dbq. Then r = d(a− bq). Thus, d|r. From our assumption, we also get d|n.

Next, suppose d|n and d|r. Then there are integers a and b so that n = db and r = da.
Substituting n and r into the equation for m yields m = dbq + da. Factoring out a d gives
m = d(bq + a). Thus d|m. From our assumption, we also have d|n.

We have proven that d|m and d|n if and only if d|n and d|r. �
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4. Contradiction

Generic Outline for Contradiction: To prove P ,

1. Suppose ¬P

2. Prove a contradiction

3. Conclude P

Theorem: It is not the case that 2|1.

Proof: We will prove that it is not the case that 2|1. We will prove this by way of contra-
diction.

Suppose 2|1. By the definition of divisibility, there is an integer k so that 2k = 1. Then
k + k = 1. This means k ≤ 1. There are two cases–either k = 1 or k = 0. If k = 0 then
2 · 0 = 0. Hence, 1 = 0 and this is false by Peano Axiom three. If k = 1 then 2 · 1 = 2. Thus,
1 = 2 and this is false since the successor function is injective and 1 6= 0 Then s(1) 6= s(0).

We have proven by way of contradiction that it is not the case that 2|1. �
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5. Contradiction

Generic Outline for Contradiction: To prove P ,

1. Suppose ¬P

2. Prove a Contradiction

3. Conclude P

Theorem: It is not the case that 0 = 1.

Proof: We will prove that it is not the case 0 = 1. We will prove this by way of contradiction.
Suppose 0 = 1. Then 0 = s(0) and this is false by the third Peano Axiom.
Therefore, it is not the case that 0 = 1. �
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6. Subset

Generic Outline for Subset: To prove that a set A is a subset of a set B,

1. Let a ∈ A

2. Prove b ∈ B

Theorem: Suppose that R, S, and T are binary relations on a set A. Then R ◦ (S ◦ T ) ⊆
(R ◦ S) ◦ T .

Proof: Let R, S, and T be binary relations on a set A. We will show that R ◦ (S ◦ T ) ⊆
(R ◦ S) ◦ T .

Suppose (a, d) ∈ R ◦ (S ◦ T ). This means there is some b ∈ A with (a, b) ∈ R and
(b, d) ∈ S ◦ T . Since (b, d) ∈ S ◦ T , there is some c ∈ A with (b, c) ∈ S and (c, d) ∈ T . Since
(a, b) ∈ R and (b, c) ∈ S, it follows that (a, c) ∈ R ◦ S. Since we also know (c, d) ∈ T , this
means (a, d) ∈ (R ◦ S) ◦ T . Thus, R ◦ (S ◦ T ) ⊆ (R ◦ S) ◦ T . �
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7. Set Equality

Generic Outline for Set Equality: To prove a set A equals a set B,

1. Prove A ⊆ B

2. Prove B ⊆ A

Theorem: Suppose that R is an equivalence relation on a set A and that a, b ∈ A. If aRb,
then [a]

R
= [b]

R
.

Proof: Let R be an equivalence relation on a set A and that (a, b) ∈ A. We will prove that
if aRb, then [a]

R
= [b]

R
. Suppose aRb. First we will prove [a]

R
⊆ [b]

R
. Let x ∈ [a]

R
. By the

definition of equivalence class, aRx. Since R is symmetric, bRa. By transitivity, bRx. Then
x ∈ [b]

R
. Thus, [a]

R
⊆ [b]

R
.

Next, we will prove [b]
R
⊆ [a]

R
. Let x ∈ [b]

R
. By the definition of equivalence class, bRx.

By transitivity aRx. Then x ∈ [a]
R
. Thus, [b]

R
⊆ [a]

R
.

We have proven that if aRb then [a]
R
= [b]

R
. �
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8. Equivalence Relation, Set Equality, Biconditional

Generic Outline for Equivalence Relation: To prove that a binary relation R on a set
A is an equivalence relation,

1. Prove that R is reflexive

2. Prove that R is symmetric

3. Prove that R is transitive

Generic Outline for Set Equality: To prove that a set A equals a set B,

1. Prove A ⊆ B

2. Prove B ⊆ A

Generic Outline for Biconditional: To prove a biconditional P ↔ Q,

1. Prove P → Q

2. Prove Q→ P

Theorem: Suppose that R is a reflexive relation on a set A. R is an equivalence relation if
and only if R = R ◦R∪.

Proof: Let R be a reflexive relation on a set A. We will prove R is an equivalence relation
if and only if R = R ◦R∪.

First, we will prove if R is an equivalence relation then R = R ◦ R∪. Suppose R is an
equivalence relation. We will prove R ⊆ R ◦ R∪. Let (a, b) ∈ R. Then aRb. Since R is
reflexive, aRb and bRb. Taking the converse of bRb, yields aRb and bR∪b. Then aR ◦ R∪b.
Thus, R ⊆ R ◦ R∪. Next, we will prove R ◦ R∪ ⊆ R. Let (a, c) ∈ R ◦ R∪. Then there is
a b ∈ A, so that aRb and bR∪c. By the definition of converse, aRb and cRb. Since R is
symmetric, aRb and bRc. By transitivity, aRc. Thus, R ◦R∪ ⊆ R. Therefore, when R is an
equivalence relation, R ◦R∪ = R.

Next, we will prove that if R = R ◦ R∪ then R is an equivalence relation. Suppose
R = R◦R∪. We will prove that R is an equivalence relation. From our condition above, R is
reflexive. We will prove next that R is symmetric. Suppose aRb. Then since R is reflexive,
bRb and aRb. By the definition of converse, bRb and bR∪a. It follows that bR ◦R∪a. Thus,
bRa and R is symmetric. Next, we will prove that R is transitive. Suppose aRb and bRc.
Since we have proven R is symmetric, it follows that aRb and cRb. Applying the converse
yields aRb and bR∪c. By the definition of composition, aR ◦ R∪c. Thus, aRc and R is
transitive. Therefore, when R = R ◦R∪, R is an equivalence relation.

We have proven that R is an equivalence relation if and only if R = R ◦R∪. �
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9. Equivalence Relation:

Generic Outline for Equivalence Relation: To prove that a binary relation R on a
set A is an equivalence relation,

1. Prove that R is reflexive

2. Prove that R is symmetric

3. Prove that R is transitive

Theorem: Suppose that f : A→ B is any function. Let R be the relation defined on A so
if a, b ∈ A, then aRb if and only if f(a) = f(b). R is an equivalence relation.

Proof: Let R be the relation defined on A so that if a, b ∈ A, then aRb if and only if
f(a) = f(b). We will prove that R is an equivalence relation.

First, we will prove that R is reflexive. Let a ∈ A. Since a = a, f(a) = f(a). Thus, aRa

and R is reflexive.
Next, we will prove that R is symmetric. Let a, b ∈ A. Suppose aRb. This means that

f(a) = f(b). Since equality is symmetric, f(b) = f(a). Hence, bRa and R is symmetric.
Finally, we will prove that R is transitive. Let a, b, c ∈ A. Suppose aRb and bRc. That

is, f(a) = f(b) and f(b) = f(c). Substituting f(a) in for f(b) yields, f(a) = f(c). Therefore,
aRc and R is transitive.

We have proven that R is reflexive, symmetric, and transitive. Thus, R is an equivalence
relation. �
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10. Induction:

Generic Outline for Induction: To prove that P (n) is true for all natural numbers
n ≥ m,

1. Prove P (m)

2. Let k ∈ N with m ≤ k

3. Suppose P (k)

4. Prove P (k + 1)

Theorem: For all natural numbers n ≥ 4, n! ≥ 2n.

Proof:Let P (n) be the open statement “n! ≥ 2n.” We will prove P (n) is true for all natural
numbers n ≥ 4. First, note that 4! = 24 ≥ 16 = 24. Thus, P (4) is true.

Next, suppose that k is natural number and that P (k) is true. That is, we are assuming
that k! ≥ 2k. Observe that, (k + 1)! = (k + 1)k!. Since we assumed k! ≥ 2k, it follows that
(k + 1)k! ≥ (k + 1)2k. Note that k + 1 ≥ 2. Then (k + 1)k! ≥ 2 · 2k. Thus, (k + 1)! ≥ 2k+1.

We have proven that P (4) is true and that for all k P (k) implies P (k + 1). Thus, by
induction P (n) is true for all natural numbers n ≥ 4. �
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11. Induction:

Generic Outline for Induction: To prove that P (n) is true for all natural numbers n ≥ m,

1. Prove P (m)

2. Let k ∈ N with m ≤ k

3. Suppose P (k)

4. Prove P (k + 1)

Theorem: Let s be the sequence defined by s0 = 0 and sn+1 =
sn + 2

3
for all n ≥ 0. Then

s is monotonic.

Proof: Let P (n) be the open statement “sn ≤ sn+1.” We will use induction to prove that
P (n) is true for all natural numbers n ≥ 0.

First, s0 = 0 and s1 =
2

3
, so s0 ≤ s1 and P (0) is true.

Now suppose that k ∈ N and P (k) is true. That is, sk ≤ sk+1. Adding 2 to this inequality

gives sk+2 ≤ sk+1+2. Dividing by 3 now gives
sk + 2

3
≤

sk+1 + 2

3
. Our recursive definition

of s tells us that sk+1 =
sk + 2

3
and sk+2 =

sk+1 + 2

3
. Hence, we have sk+1 ≤ sk+2. Thus,

P (k + 1) is true.
We have proven that P (0) is true and that P (k) implies P (k+1) for all natural numbers

k. By induction, P (n) is true for all natural numbers n ≥ 0. It follows that s is increasing. �
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12. Induction:

Generic Outline for Induction: To prove that P (n) is true for all natural numbers n ≥ m,

1. Prove P (m)

2. Let k ∈ N with m ≤ k

3. Suppose P (k)

4. Prove P (k + 1)

Theorem: Let s be the sequence defined by s1 = 0 and sn+1 = 1− sn for all n ≥ 1. For all

n, sn =
1

2
(1 + (−1)n).

Proof: Let s be the sequence defined by s1 = 0 and sn+1 = 1 − sn for all n ≥ 1. Let P (n)

be the open statement “sn =
1

2
(1 + (−1)n).” We will prove that P (n) is true for all natural

numbers n ≥ 1. First, note that s1 = 0 and
1

2
(1 + (−1)n) = 0. Thus, P (1) is true.

Next, suppose that k is a natural number and that P (k) is true. That is, we are assuming

that sk =
1

2
(1 + (−1)k). Notice that

sk+1 = 1− sk

= 1−
1

2
(1 + (−1)k)

= 1−
1

2
−

1

2
(−1)k

=
1

2
−

1

2
(−1)k

=
1

2
(1− 1(−1)k)

=
1

2
(1 + (−1)k+1).

Hence, P (k + 1) is true.
We have established that P (1) is true and that P (k) implies P (k + 1). By induction,

P (n) is true for all natural numbers n ≥ 1. �
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13. Cardinality:

Generic Outline for Cardinality: To prove that two sets A and B have the same cardi-
nality, exhibit a bijection from A to B.

Theorem: |Z| = |N|.
Proof: We will prove that |Z| = |N|. We will define f : Z→ N by

f(n) =

{

2n− 1 n > 0
|2n| n ≤ 0

We will define g : N→ Z by

g(n) =











n+ 1

2
n is odd

−
1

2
n n is even

We will prove that f and g are inverses. Let z ∈ Z. We calculate g(f(z)).

g(f(z)) = g(2z − 1) =
2z − 1 + 1

2
=

2z

2
= z.

Next let n ∈ N. We calculate f(g(n)).

f(g(n)) = f(−
1

2
n) = |2(−

1

2
n)| = | − n| = n.

Since f and g are inverses, |Z| = |N|.
�
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14. Cardinality:

Generic Outline for Cardinality: To prove that two sets A and B have the same cardi-
nality, exhibit a bijection from A to B.

Theorem: Suppose that A and B are sets. If |A| = |B|, then |P(A)| = |P(B)|.
Proof: Suppose A and B are sets and |A| = |B|. We will prove |P(A)| = |P(B)|. Then there
are subsets C and D of A and B, respectively. Define f : C → D so that

F (C) = D = {f(x) : x ∈ C}

for C ⊆ A. Next, we will define

G(D) = {f−1(x) : x ∈ D}

for D ⊆ B. Since F and G are inverses, f is bijective. There powersets have the same
cardinality since A and B have the same cardinality. Thus, |P(A)| = |P(B)|. �
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15. Your Choice: Set Equality

Generic Outline for Set Equality: To prove that a set A equals a set B,

1. Prove A ⊆ B

2. Prove B ⊆ A

Theorem: Suppose R is an equivalence relation on a set A. Show that R ◦R = R.

Proof: Let R be an equivalence relation on a set A. We will prove R ◦R = R.
First, we show R◦R ⊆ R. Let (a, c) ∈ R◦R. This means aR◦Rc. Then there is a b ∈ A

such that aRb and bRc. By transitivity, aRc. Thus, R ◦R ⊆ R.
Next, we show R ⊆ R ◦ R. Let (a, c) ∈ R. This means aRc. By reflexive, aRc and cRc.

It follows that aR ◦Rc. Thus, R ⊆ R ◦R.
Since R ◦R ⊆ R and R ⊆ R ◦R, R ◦R = R. �
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