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Abstract: In this experiment we measured the speed of light using Foucault’s method. This
method is from the 1850s. This experiment led to Einstein’s theory of relativity and other
important theories due to the speed of light constant. We measured the speed of light by
reﬂectiﬁg a laser off of a rotating mirror. We get the speed of light by measuring the change in
position of the point image. We got 1.808 x 10% m/s (0+2.7 x 10%) for our speed of light. Our
percent error is 39%. Our data is a little off, but this is due to the number of Variablesv there are
in this experiment. We need to find a better way to measure our variables more carefully and
precisely. Then our numbers should be in agreement with others work.
Introduction: Light is one of the most important natural phenomena in nature. Light was thought
to have infinite speed until the 17% éentu‘ry. The speed of light always has the same speed to the
observer, whether it comes from the sun, a light bulb, or a laser. Historians credited Galileo as
the first scientist to try to determine the speed of light. In order to do this He had his assistant
stand at least one mile away from him. They both had lamps which could be cover or uncovered.
Gaiileo would uncover his lamp and the assistant would uncover his lamp as soon as he saw the
light from Galileo’s lamp. From the elapsed time Galileo inferred that light travels at least ten
times faster than the speed of sound!. This was a very important first step to measﬁring‘the speed
of light, because this experiment showed that the speed of light is not infinite. From this
scientists determined you need a very long distance to measure something that moves ét |
extremely high speeds. Multiple other scientists tried to determine the speed of 11ght X

Fizeau tried it in 1849. Fizeau developed a brake through method for meaéuring light. He

measured the speed of light by shining light between a rotating cogwheel. The wheel rotated



hundreds of times a second. It was therefore possible to measure the speed of light. He spun the
cogwheel faster and faster until light could not go through the gap to the remote mirror, and then
back through the same gap. From this he was able fo get the time, and how far the light traveled.
Using this information he measured the speed of light to be 3.15"fIO8 m/sec. A short time later
Foucault used a similar method to measure light using a rotating mirror- instead of the cogwheel.
This will be them method we use to get our results. He was able to measure light velocity to be
2.99774 x 10® m/sec. The current accepted value for the speed of light is 2.99792458 x 108m/sec.
These scientist and others established the procedure of how to measure light, without
these ‘scientist.s we would still think the speed of light is infinite. Finding the speed of light has
led to some significant ideas and discoveries in science. Knowing the speed of light has given us
the ability to determine the distance from earth to the stars, planets within our galaxy and even
some outside our galaxy?®. Speed of light has allowed us to determine the iﬁdex of refractiorf’.
Possibly the most important theory that was derived from knowing the speed of light is
Einstein’s theory of relétivity4. That is why the speed of light constant is one of the most
fundamental and important constants in physics and of upmost importance to measure it

accurately and precisely.

Figure 2 Diagram of Foucault Method®
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Figure 1 Pasco Scientific Speed of Light Apparatus®



Method: We used the Pasco Scientific Speed of Light Apparatus to measure the speed of light,
show in figure 1 and the set up used in figure 2 above. Once everything was aligned we saw a
focused point image through the measuring microscope. The point image looked like a bright dot
with some interference fringes around it. The apparatus optic path goes as follows; the laser goes
through lens one. After it goes through lens one it goes through the beam splitter. Then it goes

| through lens two and then hits the rotating mirror. After it hits the rotating mirror it reflects off of
it as it is spinning to hit the fixed mirror. The fixed mirror is at approximatély 12° angle away
from the incident beam of light. The light then reflects off the fixed mirror and travels back to hit
the rotating mirror. The laser beam then reflects back off the rotating mirror towards the laser on
its original path. We measured the distant of lens one (L1, lens two (L2), and the rotating mirror
(MR) from the end of the optics bench. We also recorded how far the fixed mirror (Mr) was from
the rotating mirror (My). The displacement of the point image from the cross hairs in the
microscope was another thing we measured. While measuring the displacement of the point
image we also measured the rotation velocity of the mirror (Mr). We measure the displacement
and the velocity each time we alternate our rotation from clockwise to counter clockwise.
Theory: In order to get to our finished equation that was used in Foucault’s method to measure
the speed of light, it is necessary to determine how speed of light and the displacement of the
image point are connected together. The rate of rotation of the rotating mirror, distance from the
fixed mirror to the rotating mirror and the magnification of lens one and the distance between
lenses one, two and the fixed mirror al-l affect the displacement. The laser light follows the path
as described above. The light that goes from the laser to the fixed mirror to the rotating mirror is
at angle 8. When the mirror is not rotating the angle of incidence of the light path as it strikes the

rotating mirror is also 0. Since both angles are equal between the incident and reflected rays the



angle become 20. When the mirror is rotating you can think of the laser as pulsing light. This
makes the pulse of the laser at a slightly later time, when the rotating mirror is at an angle 6;=
0+A 6. The angle of incidence is now equal to 6;= 6+A 6. This makes the total angle 26;=2( 6+A
0). We now define the point strikes the fixed mirror as S1. We also define D as the distaﬁce
between the fixed mirror and the rotating mirror. From this we can get the difference between S
and S1. The equation for thisis S; — S = D(26, — 20) = D[2 (6 + AB) — 26] = 2DA8
(Equation 1). Since the rotating mirror makes the light leaving the laser work like a quick pulse
of light we can think of it this way. There is a pulse of light and it strikes the rotating mirror
when it is at some angle. We will call it 8 for now. By the time the pulse of light makes it back
from the rotating mirror the mirror will be at a different angle. We call this angle ;. If the
mirror wouldn’t have been turning the point image would have refocused of s. Since the rotating
mirror is at is now at a different angle, this causes a change in s. Knowing the critical geometry
of virtual images is the same as for reflected images we can look at this as a virtual image

d;

problems®. Using this we can use our basic optics % == %, H; = As,H, = AS. Using those
0 0

. L As i j . . .
two equation we get A—; = %, S0As = %AS . We can write an expression for the displacement

(AS) AS' = As = (i/0)AS = B%EAS (Equation 2). Combining equation 1 and 2 and

substituting in AS= S;-S. This formula relates to the initial and secondary positions of the
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rotating mirror®. The formula for this isAS’ = (Equation 3). The angle A 6 depends on the
rotational velocity of the rotating mirror and the time the light pulse takes to travel between the

fixed and the rotating mirror. The equation for this is A6 = 1D—C-W (Equation 4). C is the speed of

light. The rotational velocity is w. The unit for w is radians per second. We then use equation 4

4AD?*w
C(D+B)

to replace A6 in equation 3 to get: AS' = (Equation 5). With a little rearranging we get
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the equation for the speed of light.c = 25 015

(Equation 6). Cis equal to the speed of light. W

is equal to the rotational velocity of the rotating mirror. The distance between lens two and lens
one, minus the focal length of lens two gives us A. B is equal to the distance between lens two
and the rotating mirror. The distance between the fixed mirror and the rotating mirror is D. AS” is
equal to the displacement of the image point as viewed through the microscope. We adjusted our
equation for our experiment to get the final form of the equation that we will be using:

4-AD2( Rev Rev

—_ SeCcw SeCccw : 7
€= DB oS o) (Equation 7)

Data and Analysis: Our measurement for A was .262 m. We got a by finding the distance
between lens two and lens one minus the focal length of lens one. B is found by measuring the
distance between lens two and the rotating mirror. We got .492 m for B. D is the distance

between the rotating mirror and the fixed mirror. B is equal to 13.2 m.

Trials | Rev/Sec cw Scw Rev/Sec ccw Sccw C
1.1114E- 1.0175E-
1 1003 02 - 1006 02 1.7919E+08"

1.1116E- 1.0171E-

2 1018 02 1091 02 1.8692E+08
1.1122E- . 1.0179E-

3 1016 02 1034 02 1.8207E+08
1.1125E- 1.0178E-

4 1018 02 1017 02 1.7998E+08
1.1127E- | 1.0168E-

5 1045 02 1045 02 1.8253E+08
1.1120E- 1.0173E-

6 1010 02 1007 02 1.7838E+08
, 1.1129E- 1.0170E-

7 1024 02 1022 02 1.7869E+08
1.1124E- 1.0176E-

8 1019 02 1026 02 1.8067E+08
1.1119E- 1.0171E-

9 1006 02 1007 02 1.7784E+08
' 1.1128E- 1.0180E-

10 1031 02 1030 02 1.8208E+08




Average | 1.8084E+08
Table 1 Shows our measured values of the displacement in the point image, how fast the mirror spun and our calculated
value for the speed of light.

Table one show our measured results of displacement in the point image, how fast the rotating
mirror was spinning and our calculated values for the speed of light. We calculated the speed of
light by plugging our numbers in to equation 7. We got 1.808 x 108 m/s (0+2.7 x 10°) for our
speed of light. Our percent error is 39%. | |

Results: Our measurement for the speed of light is clearly not very close. The main problem in
the quality was the number of variables in this experiment. There was also not a very good way
to measure the distance from the fixed mirror to our rotating mirror. That attributes to some of
our error. Our uncertainty is relatively large due to the variation in the rotating mirror speed and
the point image. The point image was hard see if it was on the exactly on the center of the cross
hairs in the microscope or if it was off by just a tiny bit.

Conclusion: Our results were off by a large margin. Some; implications of our work, is that in
further work our measurements need to be read more precisely. We also need to be very careful
to check our accuracy of our measurements as well. We also need to check our alignment more
often. Another suggestion for further work is to make sure there we take more time working on
the lab to make sure everything is aligned and checking measurements. Another suggestion for

further work would be to move the fixed mirror farther back thus improving our accuracy.
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Determination of the Speed of Light
Rachel Mussell and Brandon Wood
12/2/2014

Until around 1600 very few scientists had begun to think about the phenomenon of light, and
most thought its speed to be infinite. Through the work of Galileo, Rémer, Fizeau, Foucault,
Michelson, and many others, the speed of light was eventually determined to be 2.99774x108
meters/second. Using Foucault’s method of experimentation involving a rotating mirror, a fixed
mirror, and a light source, the displacement of the image produced by the light source was able
to be measured. A result of 1.8084 x 103 +2.71 x 10° meters/second was determined, which is a
39% error in comparison to the present day velocity. Although this error is significant, it could
be attributed to the number of measurements necessary to make the calculation.

Introduction

The speed of light, though today is considered to be one of the most fundamental pieces
of knowledge in the scientific world, was at one point only speculated upon by a few scientists.
At the time in history when only a few scientists thought about this phenomenon, most of them
thought it to be infinite. However, Galileo decided that he wanted to measure it and created a
method to attempt this. .

Galileo’s ' method involved two people using covered lanterns. These two people were on
the top of two hills that were about a mile apart. The first person would uncover their lantern and
time how much time elapsed until the second person uncovered their lantern, which was done
when this person saw the first uncover their own lantern. This number was divided by twice the
distance between the two people, as the distance the light traveled would have been from the first
person to the second and back to the first, and the speed of light could then be determined
(Reference 1).

Galileo discovered the speed of light was far too large to be determined through the
procedure he developed, but this attempt opened up the field for other scientists to also attempt
to measure the speed of light (Reference 1).

Olaf Romer was the first scientist to make a successful measurement of the speed of light.
ROmer was an astronomer and his measurement of the speed of light was based off of his
observations of the eclipses of one of the moons of Jupiter. In his observations, Romer noticed
that the eclipses were shorter when the Earth was moving towards Jupiter and longer when the
Earth was moving away from Jupiter. This observation is attributed to the speed of light being
finite. The last glimpse of the moon can be seen as the last bit of light reaches the eye, which is
slightly delayed from the time the moon actually moves behind Jupiter. R6mer noticed a longer
delay when the Earth was moving away from Jupiter. Finally, in the year 1675, after continuing
to record these observations, Romer was able to calculate the speed of light to be 2.1 x 10% m/sec
(Reference 3).

Although Rémer’s measurement was fairly close to the modern day measurement, it was
too slow due to the inability to accurately measure distances in space at the time. Enter Fizeau in
1849 who developed another method for measuring the speed of light on Earth. He setup a light
source and placed a revolving cogwheel in front of it. The light was aimed at a distant mirror,
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and the rapidly spinning cogwheel was used to created pulses of light on the mirror. The mirror
then reflected these light pulses back toward the original source. The revolving cogwheel would
either block the incoming light or let it through depending on the position of the revolving wheel.
Using this method, Fizeau was able to measure the rate at which the cogwheel rotated along with
the distance between the cogwheel and the mirror to measure the speed of light to be 3.15 x 10%
m/sec (Reference 2).

Finally, our method is based on the improvements Foucault made to Fizeau’s method.
Foucault replaced the rotating cogwheel with a rotating mirror. Michelson then took Foucault’s
method and measure the speed of light to be 2.99774 x 10® m/sec (Reference 4).

Method

The method used to carry out this experiment was very similar to the method Foucault
developed based Fizeau’s method, as described earlier. The light source is first aligned with the
rotating mirror in its stationary position. Two lenses and a beam splitter are placed in line with
the beam of light as well, as shown in Figure 1 below.

The beam of light travels through Li, a convex lense that focuses the light at point s. L;
had a focal length of 48 mm and was placed at the 93.0 cm mark on the optics bench. L, which
has a 252 mm focal length, is then placed so that the image point at s is reflected at an angle from
the rotating mirror (MR) to the fixed mirror (Mr). This location is at 62.2 cm on the optics bench.
The light hitting the fixed mirror is reflected back to the rotating mirror along the same path it
originally traveled, and the image point is focused on point s. The beam splitter is put at the 82.0
cm mark on the optics bench and is used to view the reflected point image through the measuring
microscope.

The rotating mirror rotates very rapidly, which displaces the point of reflection on the
fixed mirror. With this change, the light travels from the fixed mirror back to the rotating mirror
at a different angle. This displacement, or change is angle, is the main recording made and is the
necessary measurement to help us determine the speed of light.

My
(Fixed Mirror)

(Rotating Mirror)

Figure 1-The Foucault Method (Reference 1)
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A high speed rotating mirror assembly was used to change the speed of the rotating
mirror and a measuring microscope, which is attached to the beam splitter, was used to measure
the displacement of the light beam.

Theory

When using the Foucault method of determining the speed of light, the displacement of
the image point of the laser beam is used, rather than using a distance and time to calculate a
velocity. There are several variables that affect the amount off displacement observed. Just as
Fizeau and Foucault used a rotating cogwheel and mirror, the rate at which the rotating mirror is
important. The distance light travels from the revolving mirror to the fixed mirror and back is
also important to the eventual calculation, along with the magnifications of the two lenses and
the distances between all of them. , :

The beam of light takes a trip through several lenses and mirrors to eventually reach the
microscope where its displacement can be measured. As described above, the beam is focused to
an image point, reflected from the rotating mirror to the fixed mirror and back. Finally, it is
reflected from the rotating mirror to the beam splitter and into the microscope.

The rotating mirror reflects light at a specific angle to the fixed mirror, and this angle is
related to the rotational angle of the rotating mirror. The light hits the fixed mirror at a specific
point, S. The angle of incidence is equal to the angle of reflection, therefore when the rotating
mirror (MR) is at an angle of 8 and the laser beam strikes the Mg at an angle of 8, the total angle
between the incident and reflected light path is 26.

Light also leaves the laser at a slightly later time when Mg has rotated slightly past the
angle 0, so now the mirror is at a new angle, 61, The changing angle causes the light to his the
fixed mirror at a new location, S1. With this change and slight rotation, we find that

01=0+ A0
and because the incident and reflected light rays are equal, we can then say
201=2(0 + AO)

Figure 2a: When M, is at angle 6, the M.
laser beam is reflected fo point S on M_.

}3
U

Figure 2b: When Mg is af angle 8,, the
laser beam is reflected to point S, on M.

Figure 2 The Reflection Point on Fixed Mirror (Reference 1)
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As seen in Figure 2 above, this change in angle causes a displacement in the image point
on Mr. The distance between Mg and Mr is measurable and known, and will be called D. With
this knowledge, the displacement of the light on Mr can be calculated as follows:

' S1—S=D(201 - 20)
S1—S=D[2(0 + A9) - 20]
Equation 1: S1—- S =2DA0

Next, it is important to think about where the image point will be on the beam splitter in
two situations. The first situation is when the light beam strikes Mr when the mirror is at angle 0,
and is reflected to point S on M. If the rotating mirror is stationary, the beam of light will follow
the same path back, reflect off the stationary Mg and will be focused at point s on the beam
splitter. However, in a second situation, Mr is now rotating, and in the time it took for the light
beam to reflect off Mr at angle 6, strike M, and return to Mg, the mirror has continued rotating,
and is at a new angle, 8;. This appears to be similar to the first step of the derivation, however in
order to fully understand it, thin lens optics must be applied.

Virtual
image of

AST e\

D B A

Figure 3 Thin Lens Theory Description (Reference 1)

The displacement that will ultimately be used to observe the speed of light is the As’,
which is the displacement of light on the beam splitter, as shown in Figure 3. When using critical
geometry of virtual optics, it can be said that AS, which is the displacement of the light beam at
the two angles, 0 and 01, is the height of the virtual image for M. The light reflecting from Mg to
Mg will be focused through L and onto the beam splitter, forming an image of height As behind
the beam splitter.

The displacement of the light on the beam splitter As" is equal to the image height behind
the beam splitter (As) and can be written as follows:

As’ = As = %AS
The distance from L to the object s is i, while the distance from L; to the virtual image S
is 0. These can be restated based on the distances labeled in Figure 3 as follows:
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: S A
Equation 2: As’ = 1B AS

The first two equations can then be combined to form the following equation that relates
to the initial and secondary positions of the rotating mirror:

Equation 3: As’™ = 2bA2%
D+B

The angle A is dependent on the rotational velocity of Mg and the time it takes the light
beam to go back and forth between Mr and M, which covers a distance of 2D. This gives us the
following equation:

. 2Dw
Equation 4: A® = —

Equation 4 can then be substituted into Equation 3 to give Equation 5:

’ 4AD%*w

| c(D+B)

Finally, Equation 5 can be rearranged to determine the speed of light:
4AD?*w

As’ (D + B)

Equation 5: As’ =

Equatidn 6:c =

Data and Analysis

In collecting data to measure the speed of light, the readings of two variables were
recorded. These two variables, rotational speed of the rotating mirror and displacement of the
light beam, can be seen in Tables 1 and 2. Two rotational velocities were measured for each trial,
one with the mirror rotating clockwise and the other with the mirror rotating counterclockwise.
Table 1 shows the velocities recorded during the ten trials.

Table 1
Trials | Rotational Speed clockwise (rev/sec) | Rotational Speed counter clockwise (rev/sec)
1 1003 ’ 1006
2 1018 1091
3 1016 ~ : 1034
4 1018 1017
5 1045 v 1045
6 1010 1007
7 1024 1022
8 1019 1026
9 1006 1007
10 1031 1030

Table 1 shows the velocities of the rotating mirror.

Along with the rotational speed, the displacement of the light beam was also recorded.
This change in the beam of light comes about from the change in the angle of reflection of the
rotating mirror. Recording this displacement gives us the As® necessary to determine the speed of
light. The displacements for each trial (one in the clockwise direction, one in the
counterclockwise direction) can be seen in Table 2 below.



¥

™"
Mussell 6 e

Table 2
Trials Displacement clockwise (m) Dlsplacement counter clockwise(m)
1 1.1114 x 102 1.0175 x 10
2 1.1116 x 102 1.0171 x 10
3 1.1122 x 1072 1.0179 x 10
4 1.1125x 10 1.0178 x 102
5 1.1127 x 1072 1.0168 x 1072
6 1.1120 x 1072 1.0173 x 102
7 1.1129x 102 1.0170 x 102
8 1.1124 x 1072 1.0176 x 107
9 1.1119x 10 1.0171 x 102
10 1.1128 x 102 1.0180 x 1072

v Table 2 shows the displacement of the light beam.

Using Equation 6 from above and the data collected during the experiment, the speed of
light can be determined. However, in order to make an accurate calculation, Equation 6 must be
manipulated slightly to use the data and units recorded. The new equation, Equation 7, can be
seen below:
8TAD? (00— Wecw)

(S'ew—S'cew) (D+B)

The differences included in Equation 7 allow for the rotational velocity to be expressed in
revolutions per second, and accommodate for two readings for each trial, in the clockwise and
counterclockwise direction. The counterclockwise rotational velocity is a negative number in
order to account for the negative direction of rotation, so when calculating the speed of 11ght the
velocities from both parts of a trial are added together.

The results from the measurements recorded in Tables 1 and 2 were used in Equation 7,
along with the constant measured values of A, B, and D. A is the distance L to the edge of the
optics bench and the image point (0.262 meters), B is the distance from L to the rotating mirror,
with the focal length of L, subtracted from it (0.492), and D is the distance from Mr to Mr. The
speed of light for each trial was determined, as shown below in Table 3.

Equation 7: ¢ =

Table 3
Trial Speed of Light (m/sec)
1 1.7919 x 108
2 1.8692 x 108
3 1.8207 x 108
4 1.7998 x 108
5 1.8253 x 108
6 1.7838 x 108
7 1.7869 x 108
8 1.8067 x 108
9 1.7784 x 108
10 1.8208 x 108
Average 1.8084 x 108 +2.71 x 10°

Table 3 shows the analysis and Speed of Light calculations.
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Results

As seen in Table 3, ten trials were executed and a speed of light was determined for each
of the trials using Equation 7. The average of the ten trials resulted in a speed of light of
1.8084x10% m/sec + 2.71 x 10® m/sec. The standard deviation is not as large as the result, which
shows that the data collected was fairly consistent over the ten trials. This result was 39% off the
presently accepted value of 2.99792458 x 108 m/sec. Although this error isn’t the greatest result,
given the number of values that were necessary to measure very precisely and consistently, the
result isn’t terrible. The distance from the rotating mirror to the fixed mirror was the most
difficult to measure, as there was just no easy way to do it. The calculations of the speed of light
could be systematically too low due to an under measurement of this distance.

Conclusion

Overall, despite not being able to calculate a speed of light quite as effectively as the
greats in the world of physics, this experiment gave some insight as to why it took so many
different scientists and so many varying experiments to finally produce an accurate reading of
the speed of light. Now that the speed of light is a known constant, scientists have been able to
use it to make strides toward determining the age of the universe, along with being able to
measure the distances to stars, planets, and other galaxies Nothing in the known world is able to
exceed the speed at which light travels, which allows scientists to study the world, planets, stars,
and far away galaxies with great accuracy (Reference 5).
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Millikan Oil Drop

Rachel Brandt and Dylan Helberg

Abstract: Under the guidelines of the Pasco Scientific model we sought to measure the charge of
an electron via the Millikan Oil Drop. We sent oil drops through charged capacitors through
switching the field of the capacitor plates the drops rise rapidly and cling to the plates, fall
rapidly, or in the ground state drift downward. We measured the charge of an electron to be:

1.466 x10 C compared to 1.6 x10° C this is an 8.3% error.

History:

In the late nineteenth century the race was on to find the charge of an electron accurately.
In 1897 John Townsend used electrolysis to yield a cloud of water droplets, measuring the mass
and charge of the entire cloud he hope to find the charge on each particle. However Townsend
had issues with his cloud evaporating and the accuracy of his measurements was off. Later in
1909, Robert Millikan came up with a way to eliminate the evaporation problem by using oil
droplets, he also figured out a way to keep the cloud stationary with an electric field to hold the a
portion of the cloud in one place (Tipler, 105). Sending the oil drops through an electric field
makes the most of the dfops stick to the capacitor plates. Some drops with similar charges will
stick to the plate resisting gravity, and others with different charge will fall in line with gravity.
Ionizing the field will change the mass of the droplets so that some will fall faster than others
(106). When the field on the capacitor plates is switched (positive, negative, and ground) the
drops will either fall rapidly, rise quickly, or drift downward. This manipulation allowed

Millikan to observe and measure individual properties of oil droplets. He found that the charge of
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an electron varies in multiples, the smallest of which he determined was the value of e (Tipler
107). Millikan’s value of the electron 4.77x1 0% e.5.u was accepted until 1928 when more
precise measurements with x-ray diffractions of crystals produced the number 4.88x10? e.s.u. or
1.6x10°C. Millikan’s shortcomings were later traced to a too low number for the viscosity of

air. (Pasco Scientific).

_Theory: Symbols for equations:

o p=density of oil in kg/m?

o g= acceleration of gravity in m/s?
o n= viscosity of air in pose (Ns/m?)
o p=barometric pressure in pascals
o a=radius of the drop in m

o Ve=velocity vof fall m/s

o V:=velocity of rise m/s

o V= potential difference across the plates in volts

The radius of the oil drop can be calculated using equation 1: a = ’(—2%)2 + ;;—g) - % Then the

mass of the oil drop can be found using the radius in equation 1. Equation 2 is as follows:

m=4/3na%p so m=4/3n [ ’(%)2 + % — %]3p Then once the mass and radius are found the

charge carried by the oil drop is = mg(vetvy)/Evs where E=volts/300dcm so equation 3 is

q=4/3npg [ /(%)2 + -2?% - %]3-(171];—;0 (Equations come from Pasco Scientific).
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Method:

Figure 1 The capacitor chamber Figure 2 Millikan Oil drop Apparatus

The apparatus is set up so that the oil drop is sent into a cylinder surrounding the
capacitors. The entrance to the capacitors is small and the spacing between the two capacitors is
approximately 7.6mm deep. The capacitors are connected to a light source and a dc power
supply. The viewing scope can be adjusted to center the viewing screen so that easy
measurement of the droplets movement can be obtained. A stop watch suffices the instrument to
measure the time the drop takes to travel .05mm up or down the chamber. Figure 1 shows the
intricate nature of the capacitor chamber and the many parts to assembly. From the lid at the top,
to the droplet hole cover, upper capacitor, spacer, lower capacitor, and base. To éharge the
particles the switch can be negative, grounded, or positive; we found that the grounded piates
allowed the drop to fall where the charged plates usually sent them upward (Pasco Scientific).
Figure 2 shows the base of Pasco Scientific’s Millikan oil drop apparatus, the study base has a

light source that is sent into the circular chamber, the microscope at the left bottom magnifies the
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oil drop’s journey. The switch in the upper right corner changes the charge of the capacitors.

(Pasco Scientific).

Data:

Air Pressure: 206842 Pascal

Voltage: 500.4 V

Viscosity of air: 1.852x105 Ns/m™

+Down(s) | -Up(s)
1.88 2.94
2.03 3.08
2.10 2.79
1.94 2.09
1.78 3.22
+Down(s) | -Up(s)
1.19 1.37
2.06 2.90
2.29 2.81
2.40 2.94
2.28 2.78
+Down(s) | -Up(s)
2.08 2.68
2.28 2.18
2.32 1.89
2.13 1.50
1.37 1.50

Radius of oil droplet: 1.56x10° m
VE=2.56x10° m/s Vr = 1.77 x10° m/s
Charge of Electron: 4.68x101 e.s.u. 1.56x10%° C

Percent Error: 2.56%

Radius of oil droplet: 1.52x10™* m
VI=2.44 x10° m/s Vr=1.95 x105 m/s
Charge of Electron: 4.62x10 e.s.u. 1.54 x10™9 C

Percent Error: 4.48%

Radius of oil droplet: 1.55x10* m
VI=2.45 x10° m/s Vr=2.56 x10° m/s
Charge of Electron: 5.29x10 e.s.u. 1.76 x10° C

Percent Error: 10.1%



Particles four and five: viscosity of air 1.856 x10~ Ns/m™

+Down(s) | -Up(s) | Radius of oil droplet: 1.35x10™
2.88 3.18 V£=1.89 x10° m/s Vr=1.86 x10”° m/s
3.03 2.59 0 1o
781 3.00 Charge of Electron: 3.53x10"" e.s.u. 1.18 x10™~ C
1.78 2.38 - ) 0
27 798 Percent Error: 26.5%
+Down(s) |-Up(s) | Radius of oil droplet: 1.35x10*
2.79 278 V£=1.90 x10° m/s Vr=2.22 x10° m/s
2.31 2.50
781 3.00 Charge of Electron: 3.89x10 e.s.u. 1.29x10%° C
1.78 2.38 : a0
27 78 Percent Error: 19%
Analysis:
Charge of an Electron
2.00E-19 S—
1.80E-19 %
1.60E-19 3
38 1.40E-19
€
= 1.20E-19
Q
< 1.00E-19 _
E.i, 8.00E-20 |-
L;‘j 6.00E-20 -
4.00E-20
2.00E-20 _
0.00E+00
0 1 2 3
Particles

i
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Average Value for the charge of an electron: 1.466 x10° C compared to 1.6 x10™° C this is an

8.3% error.
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Conclusion:

After connecting the Millikan oil drop apparatus to a power supply with 500.4 volts we
measured the resistance to determine the temperature and viscosity of air. For particles 1-3 the
viscosity was 1.852x107° Ns/m™ for particles 4&5 the viscosity was 1.856 x10 Ns/m. Then we
sprayed oil into the capacitor chamber, after manipulating the particles via switching the charge
of the plates to move the particle up and down we recorded the rise and fall velocities of five oil.
drops. Then we determined the radius, mass, and charge of an electron. We determined the
charge of an electron to be 1.466 x10™° C compared to 1.6 x10° C this is an 8.3% error. We
could improve measurements by selecting particles that when neutral drift downward at a slower
pace, as these have less excess electrons, or by cleaning out the capacitor chamber after each
time spraying oil as the apparatus works better when clean. Our last measurements were the least

precise as the chamber was clogged with oil.
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Gravitational Torsion
Abstract

History is dotted with many great scientific discoveries. From how the body fights off
viruses to the element that makes up everything around us. None seem to be as important as
the one that keeps us on the ground. The gravitational constant is not just a number for us to
calculate equations in class. This constant allows for Astronauts to go into space and us to walk
around. The original experiment was the first to measure an accurate number for the
gravitational constant between two masses. Using an updated experiment we took a more
modern physics approach. Combine the pendulum oscillation with a laser and we are able to get
a new way to calculate the gravitational constant.

Introduction

The first gravitational torsion experiment was conducted in 1787 by a British scientist
Henry Cavendish. The apparatus was originally designed by John Michell but he died before he
was able to conduct any experiment. The apparatus was then handed down to Cavendish who
was then the first conduct an experiment. The original apparatus was designed very simple. It
was a long rod which had a wire that attached to it so that it could hang free in space. There
were weights add on to the rod. This would cause the rod to twist back and forth. Once it was
settled two smaller weights were placed opposite the main weights. This would cause more
twisting but after a while it would become more harmonic in movement. Similar to a pendulum it

would go back and forth. The torque produced could be easily measured. Combined with



Collected below are 59 points each point has a corresponding position along a number
line. The number line was 7.95 meters away from the apparatus. The distance from the

apparatus to the measuring point does not have any affect on the pendulum or the data point

collected.
Point number Distance from Origin
in cm

1 1.351 16 2.35
2 15 17 4.10
3 3.90 18 4.45
4 11.10 19 4.95
5 9.30 20 3.85
6 9.70 21 3.50
7 20.45 22 3.60
8 18.05 23 7.45
9 3.55 24 3.70
10 4.45 25 8.50
11 2.90 26 4.65
12 3.20 27 8.45
13 8.95 28 5.65
14 2.70 29 8.30
15 3.15 30 6.90
31 5.25 47 2.05
32 2.30 48 2.50
33 8.20 49 3.05
34 9.50 50 225




35 4.35 51 2.90
36 6.00 52 2.80
37 6.25 53 2.55
38 .85 54 3.25
39 8.00 55 2.95
40 ' 415 56 2.45
41 6.45 57 2.15
42 2.75 58 2.25
43 3.30 59 2.50
44 4.15 60

45 2.90 Base Point 2.40 cm
46 3.10

Starting for the equation for the gravitational attraction the final equation for the torsion can be
derived
F=Gm1m2/b

we can then say that the torsion can be stated as follows

tgrav = 2Fd
tyana = —K0

KO = 2dGm1m2/b2

by rearranging the equation above we can get an equation for gravity we also need to account
for some of the other things like inertia of the rings. This leads to a final equation that can be

stated as such.




d? + —
G = n2ASh? — 9T
T2 mqLd
gravity constant calculated 9.75

This experiment generates a number that is close to what we know as the gravitational
constant. The fact that we can measure the force of gravity from a couple of massed on a stand.
The other fact that it is measured using a laser that is reflecting a beam of light on a wall.
Bibliography
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Finding the Gravitational Constant With A Torsion Balance

Andrew Yerrell and Joe Koenig

(November 23, 2014)

The universal gravitational constant has been experimentally known for over 200 years. Using a modern torsion

balance, we calculated our own experimental value for G. With Pasco’s torsion balance set up a distance from a

writing surface and using a laser to shine onto the balance while marking points on the surface over a time interval,

we conducted our gravitational constant experiment. Our value was slightly off from the theoretical value of G. This

experiment can be easy to understand and done by many college students looking to understand gravitational

force.

Introduction

Gravitational attraction has been studied for many of years, even back to Newton’s age
when he first used the term “gravity”. The law of universal gravitation that he proposed
stated that the gravitational attraction between any two objects is proportional to the
product of the two masses over the square of the distance between there center of
masses. G is the universal gravitational constant for all matter (Source 1). in the
experiment, the goal was to experimentally calculate this value of G using a torsion
balance. The experiment uses basic physical properties of torque and oscillations to
calculate this value. G was not experimentally calculated until 1798 when Lord Henry
Cavendish built his version of the torsion balance. Figure 1 displays a reconstruction of

his apparatus.



Cavendish's Torsion Balance

Figure 1

The apparatus consisted of a 2 foot rod with two small lead spheres attached to the
ends. The rod was then suspended in the middle by a thin Wire. Two other larger
spheres were place on each side of the small lead spheres. The attraction of the
gravitational force caused the rod to rotate while the torsional force counteracted the
gravitational force to meet equilibrium. His apparatus was constructed in a way to
determine the correlation between the angle of the rotations and the amount of
torsional force on the wire. When the rod and spheres came to rest, Caveﬁdish was able
to measure the force due to gravitational attraction. He measured G to be 6.75 x 1011 N
m?2/kg? which was very close to the accepted value used today (Source 1). Doing this
experiment one can find how small the value of G actually is and how it contributes to
objects attraction force. Because of the small value only very massive objects actually

feel a noticeable attractive force (such as planets).



Experimental Setup

FPAS GO

Figure 2
In the experiment conducted, Pasco scientific has produced a modern version of
Cavendish’ torsion balance. As you can see from figure 2 above it is very similar. The
major difference in this setup is that a small mirror is attached to the wire. A fixed
laser is then setup to shine off of the mirror and reflect back to a surface some
distance L away. Special care is taken in this setup in order to not break the wire. In
the setup, one should make sure to set the torsion stand on.a sturdy table in a room
that has minimal disturbance (Pasco).

Theory
The law of universal gravitation is displayed in equation 1 below,
F= Gmlmz/bz

Which is the driving equation in the experiment. The variable b in this equation is the
distance between the centers of the two masses. In the experiment and after, one will
wait until the system is in equilibrium before beginning. When changing the orientation

of the large masses on the apparatus, the gravitational attraction between the masses



will create a net torque on the system represented by equation 2,
Tgrav = 2Fd

Where d is the length of the lever arm. Because the system is in equilibrium before
changing the orientation, an equal and opposite torque is created to bring the system
back to equilibrium. The torque is equivalent to the torsion constant times the angle of

which the system twists. Equation 3 represents below represents this torque,
Thana = —KO

k is the torsion constant and theta is the angle of twisting. To further understand the
“angle of twisting” see figure 3. Figure 3 shows how the angle is measured by using the
laser to reflect the light at a wall that will be at equilibrium at two different spots S; and
S2. The angle is calculated using trigonometry where theta ultimately is equivalent to

the AS divided by 4L.

Figure 3



To solve for kappa in the experiment we must calculate the period of oscillations after
the changing of orientation of the spheres. Kappa is related to the period in equation 4

below,
T? = 47?1 /k

The moment of inertia | is equivalent to ZImZ(d2 + 2/5 r2) because the small masses
that make up the pendulum create this inertia where d is the distance betweeﬁ _the
center of the masses to the torsion axis and r is the radius of the spherical masses. The
experiment is used to determine the period,‘and AS in the equations. By putting the
inertia in for | and solving for k, equation 5 is produced,

d2 +2/5T2

— Q2
K = 8m“m, T2

Finally, setting equation 2 equal to the negative of equation 3 and using equation 5 for
k, one can solve for the force F and use that force in equation 1. Solving for G gives the
final equation,

dZ + 2/5 7"2
T?m,Ld

G = w?ASh?
G is what we now know as the universal gravitational constant (Pasco).

Method

The gravitational torsion balance was produced by Pasco scientific to measure the
universal gravitational constant. The initial setup of the experiment did not take long

but took a lot of precision. We placed the stand on a sturdy table in a room with little



disturbance. After placing the torsion on the stand, we attached a ground wire to the
system to take away the charge so that a force is not produced from charged particles.
After, we leveled the stand in relation to the pendulum bob that can be seen through
the sight in a mirror reflection. It is important that the pendulum bob is centered. The
large masses were then placed on the case plates and rotate the case plates to a
position closest to the small masses; thé side chosen does not matter. We let the
apparatus sit over night or for an extended period of time so that the pendulum could

| reach equilibrium. To begin the actual experiment, we had to shine a laser on the
pendulum mirror and have it reflect to a large piece of paper or surface that we could
write on. We measured the distance from the mirror to the surface which is Lin your
final equation. Then, we marked on the surface where the beginning equilibrium is as Si.
We shifted the case plates to the opposite side very carefully and waited until the
oscillations on the surface were not sporadic and rather smooth. We then started a stop
watch and marked where the light was shining in its oscillation. This we repeated every
15 seconds until we had 60 points of data. We made sure to label each mark in order
because the marks needed to be measured later in respect to S1. We let the system
oscillate even longer until it reached a point of equilibrium. We recorded this point as
S2. Using a ruler or meter stick, we measured the distances of each point from S; and
recorded the data. This experiment takes extreme precision and is hard to do. It is

recommended to use a partner in the process.



V. Data and Analysis

In our experiment, the apparatus was placed 7.95 meters away from the projecting
surface. From the data points taken every 15 seconds, we measured the distances

displayed in graph 1.

Graph 1
25
20
Distance o
from S1
o L
s Y A l\v g [\Vr\ /\V/\

Time (s)

Graph one is a line graph that connects the points to show a trend of oscillations. By the
end of the graph the oscillations become smaller and smaller. Eventually it reaches an
equilibrium around 2.4 centimeters away from Si. To estimate T (the period), we took
an average of 6 half periods throughout graph 1 because the period cannot be clearly

seen from the graph. We found T=88.3 seconds.
VI. Results

By using our results and the known constants from the Pasco manual we determined

2
our experimental value of G to be 2.79x10°°N /kgz' The accepted value by scientists



VII.

2
is 6.673x10° LN T /kgz' Our value was slightly off the actual value where we had a

percent error of 318%. The experiment we conducted was in aroom in the basement of
a universities science building. The apparatus used was very sensitive to light and would
oscillate on its own due to sound and movement. The building is constantly occupied
and the actions of other people affected the experiment. This and other factors

contributed to the error in the experimental value.
Conclusion

Our experiment was to calculate the universal gravitational constant using a torsion

2
balance. We calculated the constant to be 2.79x10°1°N ™ /kgz which was miss

calculated by 318%. To further this experiment for better results one might use an
isolated room and building with sturdy foundation. | would also recommend an easier
way of marking data points and measuring distances. A programmed sensor board that
could calculate the lasers position over time would be ideal for this experiment instead
of marking by hand and measuring. Knowing how small this constant is helped us
understand how large masses and short distances are the main contributors to objects

feeling a noticeable gravitational force.
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