Teacher Work Sample - Electronic Submission Document

Introduction

Student Teacher Cooperating Teacher School

Angela Bruhn
Nick Restau
Milford Jr./Sr. High School

Context of Teaching

My teacher work sample will be as I work with my $8^{\text {th }}$ graders in the subject of Pre-Algebra. We will be covering the last part of my Geometry unit. We will begin this unit after taking a quiz over the beginning portion of the chapter. I have a couple of students, who are "slower" learners. They are bright kids; they just take longer to grasp certain concepts. I have complete leeway in creating my unit. My co-operating teacher has granted me permission to create and explore different options in creating my unit. He will be monitoring me as I go and will okay my material before I present it as well.

A brief overlay of what we will be covering: Day 1- Angles and Polygons, Day 2Area of Certain Polygons, Day 3- Area and Circumference of a Circle, Day 4- Scavenger Hunt, and Day 5- Test.

Understanding by Design Stage One

Stage 1 - Identify Desired Results

Established Goals:

Students will have an understanding of relationships among the angles, side lengths, perimeters, and areas of similar objects.
http://www.nctm.org/standards/content.aspx?id=314

What understandings are desired?
Students will understand that...
Overarching:

- polygons have different representations in our world.

Topical:

- the sum of the angle measures in any polygon can be found and
applied to similar polygons.
- the area of polygons and circles can transfer to real-world applications.

What essential questions will be considered?

Overarching:

- In what ways are polygons represented in our world?

Topical:

- How can we find the angle measures in any polygon?
- How can we apply the angle measures of a polygon to similar polygons?
- In what ways do we see the area of polygons and circles transfer to real-world applications?

What key knowledge and skills will students acquire as a result of this unit?
Students will know. . .

- the equation to find the sum of angle measures of a polygon.
- the formulas to find the area of a triangle, trapezoid, and a parallelogram.
- The equations to find the area and circumference of a circle.
- the following key terms: regular polygon, irregular polygon, area, circumference, chord, radius, and diameter.

Students will be able to. . .

- find the sum of angle measures of a polygon.
- solve for missing angle measures of a polygon.
- calculate the area of a triangle, trapezoid, and a parallelogram.
- compute the circumference and area of a circle.

Pre-Assessment

The pre-assessment practice that I used follows here. Each student was to fill out the sheet in order to show me what they knew and also what they didn't know as well.

Are the following polygons regular or irregular ${ }_{\mathrm{yn}}$
1.

2.

3.

Classify each polygon by the number of its sides...
4.

5.

6.

7.

Find the area of this triangle...
8.

Find the area and circumference of this circle...
9.

Pre-Assessment Rubric

Teacher Name: Ms. Angela Bruhn

Student Name:

CATEGORY	3	2	1
Able to determine polygons as regular or irregular	Student have a clear understanding of what a regular and an irregular polygon is.	Student appear to have an idea of regular and irregular polygons.	Student appear to not have a grasp on the idea of regular and irregular polygons.
Classifying Polygons by the number of sides	Student knows the specific names for all of the given polygons and are able to classify them by their sides.	Student is able to classify about half of the given polygons by their sides.	Student is unable to classify polygons by the number of sides.
Finding area of polygons (Specifically a triangle)	Student demonstrates the knowledge of the equation to use to find the area of the triangle and is able to calculate the area.	Student demonstrates an idea of what equation to use to find the area of a triangle.	Student is unable to demonstrate the equation to use for the area of a triangle and is unable to find the area.
Finding the circumference and area of a circle.	Student is able to find the area and circumference of the given circle.	Student is able to find or demonstrate understanding for either the area or the circumference of a circle.	Student is unable to demonstrate an understanding of finding the area or circumference of a circle.

In the above chart we see that the majority of students knew the difference between regular and irregular polygons. Most were also able to classify polygons and assign them their appropriate name. The thing we struggled with the most is finding the area of a triangle and the area and circumference of a circle.

This information gives me a great base to build upon. The students have a solid understanding of what a polygon is and even if certain students were unable to give them all a particular classification, they still were able to show a slight understanding of the classification each polygon has.

In light of the pre-assessment results, I realized that we were going to have to give a vast majority of our attention to finding area of different polygons and circles. Since the majority of my students have an understanding of polygons and their classifications, a great deal of that information will be review and reestablishing prior knowledge.

Understanding by Design Stage Two

Stage 2 - Determine Acceptable Evidence

What evidence will show that students understand?

Performance Tasks* (summary in GRASPS form):

G: Students will be able to successfully determine the answers to a score of mathematical problems that will be given in a scavenger hunt format.

R: The students themselves will either be a scribe, a checker, or a scout within their groups.

A: The target audience is their group members and I.
S: For the entire period the students will be working in groups of 3 . They will find themselves playing one of the roles above and will be going through a series of problems throughout their scavenger hunt.

P: Students will be making their way through a series of 30 mathematical problems that all have to do with our geometry unit. They will be working in groups of three. They will all be given a starting position and once they are done answering that question, they will then move to the next problem that is indicated on the same card.

S : The standards are included in the rubric that can be found under postassessment.

Other Evidence (quizzes, tests, prompts, observations, dialogues, work samples):

Along with the scavenger hunt, we had two separate homework assignments as well as a test.

Homework for 7.5-7.6 was in several different colors. The student's worked on the problems individually during the class period and when they were done they had to pair up with the student who had the same color of sheet to compare and talk about their answers.
7.5-7.6 Homework Name____

NAME AND FIND THE SUM OF THE INTERIOR ANGLES FOR THE FOLLOWING POLYGONS.
1.

2.

3.

FIND THE AREA OF THE FOLLOWING POLYGONS:
4.

5.

6.

The next day's homework assignment was a take home assignment to give the students a change to practice finding the area and circumference of a circle.

Name :

Fit one full page to window
Teacher : \qquad Date :

Solve the missing elements for each problem. Use 3.14 for Pi.
1)

2)

3)

Radius:

Radius:
Diameter
\qquad
Radius: 5
Diameter: \qquad
9)

Radius:
Diameter: $12 \quad 12 \mathrm{~cm}$
Circumference:
.

The test that the student's took on the last day of my work sample is the following:
\qquad

Name the following from the given diagram:

4. 2 pairs of Alternate Interior Angles:

Find the Complement and the Supplement to the following angles...

5. 72°
6. 88°
7. 3°

Find the missing angle measures...
B. If angle $1=46$ what is the measure of the following angles:

- $2=$
- $3=$
- $4=$
- $5=$
- $6=$
- $7=$
- $8=$

State whether the following triangles are congruent by 5SS, SAS, ASA. state the congruency

statement well!

9.

11.

Classify the following Quadrilaterals with the best name to describe each...
12.

13.

14.

16.

15

17.

Find the sum of the interior angles AND each individual angle for the following REGULAR polygons:
18. Nonagon
19. Pentagon \qquad 20. Polygon with 26 sides

Find the area of the following polygons:
21.
22.

23.

Find the area AND circumference of the following circles:
24.

25.

Student Self-Assessment and Reflection:

1. Did you feel that the Scavenger Hunt (Review Activity) was helpful to you in reviewing for the test?
2. How would you describe your comfort level with the material that we covered in chapter 7?
3. How might I improve the unit to benefit your learning?

Post-Assessment

Scavenger Hunt

Today's activity is a sort of "scavenger hunt". I will put you in groups of about 3 people. The following points are the directions for each group. If you have questions please feel free to ask!

- Each person will have a "job"
- The scout (Finds the next problem for the group)
- The scribe (Writes the problem number and it's answer)
- The checker (Checks the scribe and makes sure that the group has the right answer)
- Each card will have your next destination. The scout is to find where the next problem is. Make sure you are following the cards directions and you are going to the right card next.
- You will start at the following number:

Make sure you get to as many cards as you can within the period. I will know if you are going in order or not by the number list. You should end up at the card you began with.

Please DO NOT write on the cards!

Teacher Name: Ms. Bruhn

Student Name:

CATEGORY	4	3	2	1
Amount of problems attempted	All 30 problems were attempted.	At least 24 problems were attempted	At least 18 problems were attempted	Less than 18 problems were attempted.
Solutions are accurate	At least 24 problems were accurate.	At least 20 problems were accurate.	At least 15 problems were accurate.	Less than 15 problems were accurate.
Active Participation	Student was actively participating the whole class period.	Student was actively participating about 75% of the time.	Student was participating randomly, but not often.	Student was more of a distraction to the process then a help.
Use of Class Time	Used time well during the class period. Focused on getting to the end. Never distracted others.	Used time well during the class period. Usually focused on getting to the end of the scavenger hunt and never distracted others.	Used some of the time well during the class period. There was some focus on getting to the end of the scavenger hunt done but occasionally distracted others.	Did not use class time to focus on the scavenger hunt OR often distracted others.

Lesson Plans

Day One:

Student Teacher: Angela Bruhn

 Grade Level: $\mathbf{8}^{\text {th }}$ GradeDate: 2/19/2013

State Standard: In grades 6-8, all students should precisely describe, classify, and understand relationships among types of two- and three-dimensional objects using their defining properties.
I. Goal:

When given an irregular or regular polygon students will be able to find the sum of the interior angle measures.

II. Objectives:

- When given a polygon, students will be able to calculate the total sum of the measures of the interior angles.
- When given a regular polygon, students will be able to determine the value of each individual interior angle.
- When there is only one missing angle measure, students will be able to develop an equation and determine the missing angle's value.
III: Faith / Values Integration:

IV. Integrated Technology:

We will be using the overhead projector to project the keynote presentation for the lesson.

V. Materials:

Overhead projector, keynote, clicker, white board, expo markers, pencils, and notes.

VI: Procedure:

A. Set / Hook: To start off today's lesson we are going to watch this short video that is an introduction to the essential question, "What is a polygon?"
http://www.youtube.com/watch?v=9eSGGUKC1fk
B. Transition: Now that you have been introduced to a couple of "polygons" we are going to move into our discussion of the wide variety of polygons that we have in our world today.
C. Main Lesson:

Required

Adaptations/Modifications:

Required

Adaptations/Modifications:

Required

Adaptations/Modifications:

For my different learners, I will provide a visual aspect to my lesson, a written explanation, and an oral overview of all the material that we are going to be covering.

What is the sum of the measures of the interior angles of a nonagon?

$$
\begin{array}{rlrl}
(n-2) 180^{\circ} & =(9-2) 180^{\circ} & \leftarrow \text { A nonagon has nine sides. Substitute } 9 \text { for } n . \\
& =1,260^{\circ} & & \leftarrow \text { Simplify. }
\end{array}
$$

The sum of the angle measures of a nonagon is $1,260^{\circ}$.

Algebra Find the missing angle measure in the pentagon at the right.

Step 1 Find the sum of the angle measures.

$$
\begin{array}{rlrl}
(n-2) 180^{\circ} & =(5-2) 180^{\circ} & \leftarrow \text { Substitute } 5 \text { for } n . \\
& =540^{\circ} & & \leftarrow \text { Simplify }
\end{array}
$$

Step 2 Write an equation. Let $x=$ the missing angle measure.

$$
\begin{aligned}
& 540^{\circ}=90^{\circ}+75^{\circ}+130^{\circ}+135^{\circ}+x^{\circ} \leftarrow \text { Write an equation. } \\
& 540^{\circ}=430^{\circ}+x^{\circ} \leftarrow \text { Simplify. } \\
& 110^{\circ}=x^{\circ} \quad \leftarrow \text { Subtract } 430^{\circ} \text { from each side. }
\end{aligned}
$$

The missing angle measure is 110°.

3 Multiple Choice A carpenter wants to know the angle measures of the window at the right in order to cut out the correct space in a wall. If the window is a regular octagon, what is the measure of each angle?
(A) 85°
(B) 135°
(C) 142°
(D) 156°

$$
\begin{aligned}
(n-2) 180^{\circ} & =(8-2) 180^{\circ} \leftarrow \text { Substitute } 8 \text { for } n . \\
& =1,080^{\circ} \leftarrow \text { Simplify. } \\
1,080^{\circ} \div 8 & =135^{\circ} \quad \leftarrow \text { Divide the sum by the number of angles. }
\end{aligned}
$$

Each angle of a regular octagon has a measure of 135°. The correct answer is choice B.
D. Transition: Now that we have covered angles and polygons, you should all be fluent in finding the sum of the angle measures in any polygon.
E. Conclusion: Now that we have established our polygons and are able to classify different polygons, tomorrow we will move into finding the area of certain polygons.

VII. Assessment:

Today's lesson is full of informal assessment. During individual work time, I will be able to check for understanding in all of my students.
VIII. Assignment:

The assignment will be given with tomorrow's assignment.
IX. Self-Evaluation:

Today's lesson overall went fairly well. With the help of the pre-assessment I knew that the students had a great background knowledge with the different types of polygons. Therefore we were able to go over that portion of the lesson more quickly and move into the newer material.

I definitely needed work out more examples for the class before moving into their individual work time. I also would elaborate more on finding the individual angle for the regular polygons a bit more. Students caught on to the concept during the lesson, but with their practice problems they were a bit confused about when we could find the individual angle and when we couldn't.

COMMON POLYGONS

DEFINITION/EQUATION

KEY CONCEPTS Polygon Angle Sum

For a polygon with n sides, the sum of the measures of the interior angles is $(n-2) 180^{\circ}$.

EXAMPLE!

What is the sum of the measures of the interior angles of a nonagon?

```
Interior angles: Two consecutive sides form an
```

Interior angles: Two consecutive sides form an
interior angle.

```
interior angle.
```

$(n-2) 180^{\circ}=(9-2) 180^{\circ} \leftarrow$ A nonagon has nine sides. Substitute 9 for n.
$=1,260^{\circ}$
\leftarrow Simplify
The sum of the angle measures of a nonagon is $1,260^{\circ}$.

FINDING MISSING MEASURES

REGULAR POLYGON

Algebra) Find the missing angle measure in the pentagon at the right.
Step 1 Find the sum of the angle measures.

$$
(n-2) 180^{\circ}=(5-2) 180^{\circ} \quad \leftarrow \text { Substitute } 5 \text { for } n \text {. }
$$

\leftarrow Simplify.

Step 2 Write an equation. Let $x=$ the missing angle measure.
regular polygon is a polygon with all sides congruent and all angles congruent. To find the

$$
=540^{\circ}
$$ measure of each angle of a regular polygon, divide the sum of the angle measures by the number of angles.

$$
540^{\circ}=90^{\circ}+75^{\circ}+130^{\circ}+135^{\circ}+x^{\circ} \leftarrow \text { Write an equation. }
$$

$$
540^{\circ}=430^{\circ}+x^{\circ} \leftarrow \text { Simplify. }
$$

$110^{\circ}=x^{\circ} \quad \leftarrow$ Subtract 43° from each side.
The missing angle measure is 110°.

Day Two:

Student Teacher: Angela Bruhn
Grade Level: $\mathbf{8}^{\text {th }}$ Grade Date: $2 / 19 / 2013$
State Standard: In grades 6-8, all students should precisely describe, classify, and understand relationships among types of two- and three-dimensional objects using their defining properties.

Subject: Pre-Algebra
Name of Lesson: Angles and Polygons
Period / Time: $6^{\text {th }} 47$ minutes
I. Goal:
When given a parallelogram, a triangle, and a trapezoid, students will be able to determine the area of each polygon.

II. Objectives:

- When given a parallelogram, students will be able to determine the area of the given parallelogram.
- When given a triangle, students will be able to compute the area of the given triangle.
- When given a trapezoid, students will be able to conclude what the area of the given trapezoid is.

III: Faith / Values Integration:

I expect my students to be respectful of one another and when they are given time to work together, they need to be respectful of one another's work.
IV. Integrated Technology:
We will be using the overhead projector to project the power point presentation for the lesson.

Required
Adaptations/Modifications:

Required

Adaptations/Modifications:
\qquad Required Adaptations/Modifications:

Required

Adaptations/Modifications: Inherent in lesson design

V. Materials:

Overhead projector, power point, clicker, homework, white board, expo markers, pencils, and notes.

VI: Procedure:

A. Set / Hook: To start off today's lesson, we are going to review the procedure in which we are to use to find the area of a square or a rectangle.
B. Transition: Since we have recalled what we need to do to find the area of those two simple polygons, we are going to move into finding the area of three other polygons.

Required

Adaptations/Modifications:

There will be several visual and orally presented examples. In order to reach as many students, I will do several examples and go into great detail of the processes in which we will need to find the area.
C. Main Lesson:

1. To start off we are going to focus on finding the area of a parallelogram. I will ask, "How do we know if a polygon is a parallelogram?"
2. I will discuss how the parts of a parallelogram that we will need to find the area and then we will take a look at the formula used for the area.

KEY CONCEPTS
 Area of a Parallelogram

The area of a parallelogram equals the product of any base length b and the corresponding height h.

$$
A=b h
$$

3. We will do the following example as a class to make the idea more concrete.

4. Next, is finding the area of a triangle. I will make sure that we make the connection that the area of a triangle is one half of the area of a parallelogram.

5. Then I will reveal the formula to find the area of a triangle and we will do an example of finding the area of a triangle.

Architecture An architect plans to cover the front triangular section of a townhouse with cedar shingles. Find the area of the triangle at the left.

$$
\begin{array}{rlrl}
A & =\frac{1}{2} b h & & \leftarrow \text { Use the formula for the area of a triangle. } \\
& =\frac{1}{2} \cdot 24 \cdot 16 & \leftarrow \text { Substitute } 24 \text { for } b \text { and } 16 \text { for } h . \\
& =192 & & \leftarrow \text { Multiply. }
\end{array}
$$

The area is $192 \mathrm{ft}^{2}$.
6. Then the students will be given a chance to practice this concept
individually as well with

Find the area of the triangle below.

7. Finally we have the area of a trapezoid. We will discuss the formula for the area of a trapezoid and will do a practice problem as a class.

KEY CONCEPTS Area of a Trapezoid

The area of a trapezoid is one half the product of the height and the sum of the lengths of the bases.

$$
A=\frac{1}{2} h\left(b_{1}+b_{2}\right)
$$

8. I will then give the students some time to practice finding the area of a trapezoid individually, then compare with a partner, and then we will come to class and discuss the parts and pieces of finding the area of each

9. To wrap it up, I am going to present the students with all three formulas that we covered today. They will then need to assign the given polygon that each formula goes with.

Identify which polygon area each formula represents.

2. $A=b h$
3. The last at the end problem challenging and it have problem. the area of
4. $A=\frac{1}{2} b h$

8 ft
4. $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
problem that I will do of the lesson is the below. It is a more portion of the lesson incorporates all that we covered today all in one We are going to find the following polygon.

conversation and had some really good questions. The last challenge problem was a lot of fun to do with the class. It also ties into the lesson for tomorrow.

Before finding the area of the trapezoid, I would first explain to the students about how we get the equation that we do.

The "homework" activity was very effective. It was awesome to see students discussing their math problems and challenging each other if they were disagreeing. They were interacting with math as the center of the interaction.

Area of a Parallelogram

Areas of Polygons

Pre-Algebra
Section 7.6

Any side of a triangle can be the base. The height of a triangle is the perpendicular distance between the base and the opposite vertex.

Example of Finding area of a parallelogram:

․

The area of a parallelogram equals the product of any base length b and the corresponding height h. $A=b h$

10 cm

Areo of o Triangle

Example of

 Finding area of a triangle:[^0]

Day 3 Lesson Plan

I. Goal:

Required

Students will be able to find the circumference and area of a circle and find
Adaptations/Modifications: the area of irregular figures.

Required

II. Objectives:

- When given a circle, students will be able to classify parts of that circle.

Adaptations/Modifications:

- When given a circle and its radius, students will be able to compute the circumference of the circle.
- When given a circle and its radius, students will be able to determine the area of the circle.
III: Faith / Values Integration:

IV. Integrated Technology:

We will be using the overhead projector to project the power-point presentation for the lesson.

Required

Adaptations/Modifications:

Required

Adaptations/Modifications: Inherent in lesson design

V. Materials:

Overhead projector, power-point, clicker, homework, white board, expo markers, pencils, and notes.

VI: Procedure:

A. Set / Hook: We are going to a quick overview of yesterday's lesson. I will ask them to give me the three polygons that we found the areas of and also the formula used to find the area for those three.
B. Transition: Now that we have found the areas of several different polygons, we are going to transition into circles and finding the circumference and area of a circle.
C. Main Lesson:

1. To start off today's lesson we are going to break the circle down into 4 main parts with the following diagram:

Circumference is \longrightarrow A radius is a segment that has one endpoint at the center and the other endpoint on the circle.
 A diameter is a chord that passes through the center of the circle. the distance around the circle.
 A chord is a segment with endpoints on the circle.

Required

Adaptations/Modifications:

For my different learners, I will provide a visual aspect to my lesson, a written explanation, and an oral overview of all the material that we are going to be covering
2. Then we are going to zoom in on the topic of (Pi) and its significance in circles. First I will define that $\pi=\frac{C}{d}$. And then how we manipulate that equation into the formula for the circumference (C).
3. We will watch this short video that describes the significance of pi in greater detail.

4. Next we will discuss the formula for finding the area of a circle.

$$
A=\pi r^{2}
$$

5．Now that we have looked at the formulas to finding the circumference and the area．We will put that into practice with the following example：

Sports Equipment Find the circumference

 and area of the basketball hoop at the right．$$
\begin{aligned}
& C=\pi d \quad \leftarrow \text { Use the formula for circumference. } \\
&=\pi(45) \leftarrow \text { Substitute } 45 \text { for } d . \\
& \text { 水区 } 45 \text { 国 } 141.3716594 \leftarrow \text { Use a calculator. }
\end{aligned}
$$

The circumference is about 141.4 cm ．
$A=\pi r^{2} \quad \leftarrow$ Use the formula for the area of a circle．
$=\pi(22.5)^{2} \leftarrow$ The radius is $45 \div 2$ ，or 22.5 ．Substitute 22.5 for r ．

The area is about $1,590 \mathrm{~cm}^{2}$ ．
6．Then I will give the students a chance to practice finding the area and the circumference with the following three examples．I will let the students choose one that we will do as a class and then they will need to do the other two individually before we do them as a class．
8.

10.

7．The final topic of today＇s lesson is finding the area of an irregular figure．This encompasses what we covered the previous day as well as today．We will do the following examples as a class：（the last three you will find the area of the shaded region）

Find the area of the front of the mailbox.
Step 1 Find the area of the half circle.

$$
\begin{array}{rlrl}
A & =\frac{1}{2} \pi r^{2} & \leftarrow & \leftarrow \begin{array}{l}
\text { Multiply the formula for the area } \\
\text { of a circle by } \frac{1}{2} .
\end{array} \\
& =\frac{1}{2} \pi(5)^{2} & \leftarrow \text { Substitute } 5 \text { for } r . \\
& \approx 39.3 & \leftarrow \text { Multiply. Round to the nearest tenth. }
\end{array}
$$

Step 2 Find the area of the rectangle.

$$
\begin{array}{rlrl}
A & =b h & \leftarrow \text { Use the formula for the area of a rectangle. } \\
& =10 \cdot 7=70 \quad
\end{array}
$$

Step 3 Add the two art
The area of the front of
22.
21. 7 in.

-

D. Transition: We now have combined all that we have covered into simple problems.
E. Conclusion: This is our last topic for this chapter and in the last few days we have looked at different polygons and finding the sum of the interior angles, we have found out how to find the area of triangles, parallelograms, and trapezoids; and finally finding the area and circumference of a circle.

VII. Assessment:

I conducted some quick informal assessments during work time as well as the formal assessment that is also their assignment.
VIII. Assignment:

They will have a worksheet to practice finding the area and circumference of a
Required
Adaptations/Modifications: circle.

Required

Adaptations/Modifications:

IX. Self-Evaluation:

X. Coop's Comments:

The video, was a bit of a side point, but the students were surprised by the information that it provided and it was a different tool for instruction to mix things up for them as well.

It was very helpful to review the parts of the circle even if they have seen them before. It got them thinking and the wheels turning to get us going.

I didn't allow enough time to discuss the irregular figures as much as I had hoped. So allowing more time to cover that topic would be a good idea.

Parts of

 a Gircle

Example of finding hoth circumference and area：

Sports Equipment Find the circumference and area of the basketball hoop at the right．

$$
\begin{aligned}
& C=\pi d \quad \leftarrow \text { Use the formula for circumference. } \\
&=\pi(45) \leftarrow \text { Substitute } 45 \text { for } d . \\
& \text { 四区 } 45 \text { 日 } 141.3716694 \leftarrow \text { Use a calculator. }
\end{aligned}
$$

The circumference is about 141.4 cm ．

$$
\begin{aligned}
& A=\pi r^{2} \quad \leftarrow \text { Use the formula for the area of a circle. } \\
& =\pi(22.5)^{2} \leftarrow \text { The radius is } 45 \div 2 \text {, or } 22.5 \text {. Substitute } 22.5 \text { for } r \text {. } \\
& \text { 园区 } 22.5 \text { 园 } \text { E } 1590.43128 \leftarrow \text { Use a calculator. } \\
& \text { The area is about } 1,590 \mathrm{~cm}^{2} \text {. }
\end{aligned}
$$

Co-op's Comments: (An overview of the project and the test along with 2 lesson's detailed comments)

Pre-Algebra (8th Grade)

Unit 7
"Summation of Thoughts" regarding Unit 7 Review Activity and Unit 7 Exam.
Student Teacher: Ms. Angela Bruhn
Cooperating Teacher: Mr. Nick Restau

Unit 7

7-1 Pairs of Angles
7-2 Angles and Parallel Lines
7-3 Congruent Polygons
7-4 Classifying Triangles and Quadrilaterals
7-5 Angles and Polygons
7-6 Areas of Polygons
7-7 Circumference and Area of a Circle

Unit 7 Review

For the review activity, Ms. Bruhn developed a "solve and search" activity in which students would be engaged out of their desks, moving around the room. In this activity, cards with problems were placed throughout the room. Once solved, students would continue on the established sequence of problems, moving in order from one to the next. There were 30 cards total. Students worked in pairs or groups of three as they progressed through the task. This was a great opportunity for peer learning and interaction.

As the students engaged in the activity, Ms. Bruhn floated throughout the room, making sure to check in with each group, answering questions, probing for understanding, and maintaining control over the group.

The willingness and creativity that Ms. Bruhn has in regards to this activity and the others implemented in her time here at Miltord Public Schools has proven to be a great strength of hers as she develops her teaching practices. This ability directly translates into student engagement, which in turn leads to higher student achievement

Unit 7 Exam

This unit exam is one of many that Ms. Bruhn has created in her student teaching experience here at Milford Public Schools. Her assessment development has been more than adequate, providing clear and concrete directions, adequate space for student work, as well as appropriate questions. The sections were clearly marked and ordered as the curriculum was delivered to the students. This organization is well received by the students.

The overall results of the exam were very well. The lessons leading up this exam were well developed, and the conceptual knowledge grounded into the students. This exam focused on two major components found in a geometry unit, application of definitions and terminology, and computation utilizing formulas. Students were successful in both areas. Overall, a very well done unit.

Areas of Poligguns

Pre-Algetara
Sution 7.6

Wuch Renture

- Wrat thonogh quiz, renforued idens/ curnepts of restieal angles, argucent angles, comesponeling angles, and altornate mtevior angles.
wint through rest of quiz, giod descurseon and pronded clarity when nueled.

1:03 Begare the pumerpint

- Befure muving into $1^{\text {st }}$ slide, you ded a govel jub at feleny alt where the students currently are w/ board examples.

Sketch on bourd
\qquad

L make sunc to reter to base as the entive side
\rightarrow said in stide, mut re-say.
Why 'sn't thin the hight?

$\leftarrow 1$ use a noom exumple.
Can 1 mearse the hight uring the walls?

After eath sude you did a goid job at chmeting stment understunetury.

- moghte tuke this fuotuer by askeng questions before moving on to enyage those we muy "wony" about.
/ hiked how wosted the examples onet, very orgenized and clerer.

Did ayreat jub descussing the fryures.

- If a student asks, "Where do we get the formula for a tropezoid?" Can you tell them.
- you illustrated the trinngle and parallelegraren well.
-Just wonehring? Gotte anticiepute sweh questions. A

1:21 Trupuzvids - good timiny todery.
\rightarrow Dulton Astual! Amazing!

- expluenation - use two trapecoids to nuthe a puralelegram. The haight is the sume for the purdlelyram as it is for the trapecoid. The bure of the puralulogram is $\left(b_{1}+b_{2}\right)$. Then out in $1 / 2$ to got one traprezoid.
- Chullenge Cunstion is Avesonc.
\rightarrow mouphe une deffenent colons of monhers. \rightarrow piese ont, goved jöb, kids engaged.
- Nuw thonumure Activity

expoments hefore multuplicution
- know you showat this in your example, yet always youd to show. -Sometinis/s set a temu to this, hat (hled hav you brought enorgone buck tugether on the bpard, to cheak solutions.

Reflection

Student Learning Progress

1. When you look at the pre-assessment and the post-assessment you see a drastic change in the understanding that the students have in regards to polygons, area, and circles. A few students had an idea of how to find the area of a triangle before the lesson began, but after we covered the topic of finding area they were not only able to find the area of a triangle; but, also the area of a trapezoid, circle, and parallelogram.

The student's who didn't have a very good understanding of what the area would be for a triangle, grasped the idea of finding area of a triangle, trapezoid, a circle, and a parallelogram. This is reflected in the post-assessment in the scavenger hunt and the test. Below is some of the results of the post assessment. Using the same rubric from the pre-assessment and from the results of the test we see a drastic improvement in all areas. Not all students were able to grasp all of the concepts, but there was improvement in their abilities as a math student.

2. I believe the unit objectives were met. Students were exposed to different polygons in a variety of representations in our world. Through the postassessment we see that their overall idea of polygons and the different things we can do to find out information about them has been enhanced. The majority of students were able to find the area of different polygons and circles.
3. There was a bit of a lack of growth in a couple of students. One student in particular lacks confidence in her abilities. She is a very bright student she is just constantly second guessing herself. She needs some extra attention to formulize the concepts as we go on with our lesson. One other young gentleman has some fairly large learning gaps. He needs things to be slowed down a great deal and explained in great detail. He doesn't have the background knowledge that a lot of the students do. It isn't a bad thing, it is just something that I may not have addressed enough to make him more successful.
4. If I were to teach this unit again, I would incorporate more hands on learning activities. Reading over my students self-reflections I realized that they really like a lot of variety and that is something that I need to work on to make my students stay involved in their own learning.

Personal Professional Growth

1. What did you learn about effective instruction as a result of this experience? Effective instruction can make or break a lesson. If you are not prepared to deliever a lesson with enthusiasm and with great clarity, you risk losing the motivation from your students. Effective instruction doesn't just happen within the class period itself. It happens long before you deliver your lesson, with you planning and preparations for that class period.

The more time you take to prepare for your lessons the more you are ready for anything the class can throw at you. Knowing what questions may arise from your students is also very crucial in being an effective teacher. You need to listen to your students and be prepared for things that may come up.
2. How has this experience changed your perception of yourself as a teacher?

Before my student teaching experience began, I was very nervous that I would suddenly question my choice of becoming a teacher. Thus far into my student teaching experience as well as throughout this work sample, I see myself as a teacher. Nonetheless, I am a teacher that has a lot to improve on, but also a teacher who has a lot of heart and passion for the profession.

[^0]: Architecture An architect plans to cover the front triangular section of a townhouse with cedar shingles. Find the area of the triangle at the left.
 $A=\frac{1}{2} b h_{h} \quad \leftarrow$ Use the formula for the area of a triangle.
 $=\frac{1}{2} \cdot 24 \cdot 16 \leftarrow$ Substitute 24 for b and 16 for h.
 $=192 \quad \leftarrow$ Multiply.
 The area is $192 \mathrm{ft}^{2}$.

